Dmitriy Gizlyk / プロファイル
- 情報
11+ 年
経験
|
0
製品
|
0
デモバージョン
|
134
ジョブ
|
0
シグナル
|
0
購読者
|

直接的な点群解析は、不要なデータの増加を避け、分類やセグメンテーションタスクにおけるモデルの性能を向上させます。このような手法は、元データの摂動に対して高い性能と堅牢性を示します。


階層的ベクトルTransformer法の研究を引き続き進めていきます。本記事では、モデルの構築を完了し、実際の履歴データを用いて訓練およびテストをおこないます。

マルチモーダル時系列の高速かつ正確な予測のために開発された階層的ベクトルTransformer (HiVT: Hierarchical Vector Transformer)メソッドについて詳しく説明します。

エージェントの行動を理解することはさまざまな分野で重要ですが、ほとんどの手法は特定のタスク(理解、ノイズ除去、予測)に焦点を当てており、そのため実際のシナリオでは効果的に活用できないことが多いです。この記事では、さまざまな問題を解決するために適応可能なモデルについて説明します。

この記事では、自動運転車の動作の分野における問題を解決するために開発された興味深い軌道予測方法を紹介します。この手法の著者は、さまざまな建築ソリューションの最良の要素を組み合わせました。

これまでにレビューしたモデルの多くは、Transformerアーキテクチャに基づいています。ただし、長いシーケンスを処理する場合には非効率的になる可能性があります。この記事では、状態空間モデルに基づく時系列予測の別の方向性について説明します。

最新のマルチモーダル時系列予測方法のほとんどは、独立チャネルアプローチを使用しています。これにより、同じ時系列の異なるチャネルの自然な依存関係が無視されます。2つのアプローチ(独立チャネルと混合チャネル)を賢く使用することが、モデルのパフォーマンスを向上させる鍵となります。

TEMPO法について引き続き学習します。この記事では、実際の履歴データに対する提案されたアプローチの実際の有効性を評価します。

時系列予測モデルの研究を続けます。本記事では、事前訓練済みの言語モデルを活用した複雑なアルゴリズムについて説明します。

軽量な時系列予測モデルは、最小限のパラメータ数で高いパフォーマンスを実現します。これにより、コンピューティングリソースの消費を抑えつつ、意思決定の迅速化が可能となります。こうしたモデルは軽量でありながら、より複雑なモデルと同等の予測精度を達成できます。

モデルの訓練と収束プロセスの効率を向上させるためのアプローチの1つが、最適化手法の改良です。Adam-miniは、従来のAdamアルゴリズムを改良し、より効率的な適応型最適化を実現することを目的とした手法です。

この記事では、時空間変換を活用し、今後の価格変動を効果的に予測する手法について解説します。STNNの数値予測精度を向上させるために、データの重要な側面をより適切に考慮できる連続アテンションメカニズムが提案されています。

前回の記事で取り上げた時系列の区分線形表現の活用について、引き続き議論します。本日は、この手法を他の時系列分析手法と組み合わせることで、価格動向の予測精度を向上させる方法を探ります。

本記事は、これまでの公開記事とはやや異なる内容となっています。本記事では、時系列データの代替的な表現について解説します。時系列の区分的線形表現とは、小さな区間ごとに線形関数を用いて時系列データを近似する手法です。

さまざまなモデルアーキテクチャの設計を検討する際、モデルの訓練プロセスには十分な注意が払われないことがよくあります。この記事では、そのギャップを埋めることを目指します。

長期的な依存関係と短期的な特徴量の効率的な抽出と統合は、時系列分析において依然として重要な課題です。正確で信頼性の高い予測モデルを作成するためには、それらを適切に理解し、統合することが必要です。

Transformerアーキテクチャに基づくモデルは高い効率を示しますが、その使用は、訓練段階と運転中の両方で高いリソースコストによって複雑になります。この記事では、このようなモデルのメモリ使用量を削減するアルゴリズムを紹介します。

時系列を扱うときは、常にソースデータを履歴シーケンスで使用します。しかし、これが最善の選択肢なのでしょうか。入力データの順序を変更すると、訓練されたモデルの効率が向上するという意見があります。この記事では、入力シーケンスを最適化する方法の1つを紹介します。

本稿では、時系列予測において2つのブロック(周波数と時間)の結果を適応的に組み合わせるATFNetモデルのアプローチの実装を継続します。

FreDF法の著者は、周波数領域と時間領域を組み合わせた予測の利点を実験的に確認しました。しかし、重みハイパーパラメータの使用は、非定常時系列には最適ではありません。この記事では、周波数領域と時間領域における予測の適応的組み合わせの方法について学びます。