Dmitriy Gizlyk
Dmitriy Gizlyk
  • 情報
12+ 年
経験
0
製品
0
デモバージョン
134
ジョブ
0
シグナル
0
購読者
Professional programming of any complexity for MT4, MT5, C#.
Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (HimNet)
Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (HimNet)

Предлагаем познакомиться с фреймворком HimNet, который сочетает гибкость пространственно-временной адаптации с высокой вычислительной эффективностью, позволяя получать точные и стабильные прогнозы на финансовых временных рядах. В статье подробно показано, как его ключевые компоненты взаимодействуют между собой, превращая сложные алгоритмы в управляемую архитектуру.

1
Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Модель темпоральных запросов (Окончание)
Нейросети в трейдинге: Модель темпоральных запросов (Окончание)

Представляем вашему вниманию завершающий этап реализации и тестирования фреймворка TQNet, в котором теория встречается с реальной торговой практикой. Мы пройдём путь от исторического обучения до стресс-теста на свежих рыночных данных, оценивая устойчивость и точность модели. Итоговые результаты — это не только сухие цифры, но и наглядная демонстрация прикладной ценности предложенного подхода.

2
Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Модель темпоральных запросов (TQNet)
Нейросети в трейдинге: Модель темпоральных запросов (TQNet)

Фреймворк TQNet открывает новые возможности в моделировании и прогнозировании финансовых временных рядов, сочетая модульность, гибкость и высокую производительность. В статье раскрывается возможность реализации сложных механизмом работы с глобальными корреляциями, включая продвинутые методы инициализации параметров.

Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Декомпозиция вместо масштабирования (Окончание)
Нейросети в трейдинге: Декомпозиция вместо масштабирования (Окончание)

Предлагаем познакомиться с алгоритмом разложения временного ряда на смысловые слои и построения из них экономной модели. Мы последовательно показываем архитектуру, практическую реализацию на MQL5/OpenCL и реальные тесты на исторических рыночных данных.

Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Декомпозиция вместо масштабирования — Построение модулей
Нейросети в трейдинге: Декомпозиция вместо масштабирования — Построение модулей

В этой статье продолжаем практическое знакомство с SSCNN — архитектурным решением нового поколения, способным работать с фрагментированными временными рядами. Вместо слепого масштабирования — разумная модульность, внимание к деталям и точечная нормализация. Мы шаг за шагом создаём вычислительные блоки в среде MQL5 и закладываем основу для надёжного прогнозного анализа.

Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Декомпозиция вместо масштабирования (SSCNN)
Нейросети в трейдинге: Декомпозиция вместо масштабирования (SSCNN)

В данной статье мы начинаем знакомство с фреймворком SSCNN — современным архитектурным решением для анализа временных рядов, сочетающим в себе точность, структурированность и высокую вычислительную эффективность. Мы последовательно рассмотрим его теоретические аспекты, обратим внимание на ключевые отличия от предшественников и начнем практическую реализацию базовых компонентов в среде MQL5.

Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Распутывание структурных компонентов (Окончание)
Нейросети в трейдинге: Распутывание структурных компонентов (Окончание)

В статье подробно раскрывается SCNN-архитектура и один из вариантов её реализация средствами MQL5. Мы покажем, как декомпозиция временных рядов сочетается с нейросетевыми методами и вниманием.

Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Распутывание структурных компонентов (Энкодер)
Нейросети в трейдинге: Распутывание структурных компонентов (Энкодер)

Предлагаем познакомиться с продолжением реализации фреймворка SCNN, который сочетает в себе гибкость и интерпретируемость, позволяя точно выделять структурные компоненты временного ряда. В статье подробно раскрываются механизмы адаптивной нормализации и внимания, что обеспечивает устойчивость модели к изменяющимся рыночным условиям.

1
Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Распутывание структурных компонентов (SCNN)
Нейросети в трейдинге: Распутывание структурных компонентов (SCNN)

Предлагаем познакомиться с инновационным фреймворком SCNN, который выводит анализ временных рядов на новый уровень за счёт чёткого разделения данных на долгосрочные, сезонные, краткосрочные и остаточные компоненты. Такой подход значительно повышает точность прогнозирования, позволяя модели адаптироваться к сложной и меняющейся рыночной динамике.

2
Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Окончание)
Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Окончание)

Представляем вашему вниманию заключительную часть цикла, посвящённого GinAR — нейросетевому фреймворку для прогнозирования временных рядов. В этой статье мы анализируем результаты тестирования модели на новых данных и оцениваем её устойчивость в условиях реального рынка.

1
Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Основные компоненты)
Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Основные компоненты)

Предлагаем познакомиться с новой реализацией ключевых компонентов Фреймворка GinAR — адаптивного алгоритма для работы с графовыми временными рядами. В статье шаг за шагом разобраны архитектура, алгоритмы прямого прохода и обратного распространения ошибки.

1
Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (GinAR)
Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (GinAR)

Предлагаем познакомиться с инновационным подходом к прогнозированию временных рядов с пропущенными данными на базе фреймворка GinAR. В статье показана реализация ключевых компонентов на OpenCL, что обеспечивает высокую производительность. В следующей публикации мы подробно рассмотрим интеграцию этих решений в MQL5. Это позволит понять, как применять метод на практике в трейдинге.

Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (Окончание)
Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (Окончание)

Приглашаем вас познакомиться с фреймворком K²VAE и вариантом интеграции предложенных подходов в торговую систему. Вы узнаете, как гибридный подход Koopman–Kalman–VAE помогает строить адаптивные и интерпретируемые модели. А в завершении статьи представлены практические результаты использования реализованных решений.

Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (Энкодер)
Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (Энкодер)

Предлагаем познакомиться с новым подходом, который объединяет классические методы и современные нейросети для анализа временных рядов. В статье подробно раскрыта архитектура и принципы работы модели K²VAE.

1
Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (K2VAE)
Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (K2VAE)

Предлагаем ознакомиться с оригинальной реализацией фреймворка K²VAE — гибкой модели, способной линейно аппроксимировать сложную динамику в латентном пространстве. В статье показано, как реализовать ключевые компоненты на языке MQL5, включая параметризованные матрицы и их управление вне стандартных нейросетевых слоёв. Материал будет полезен тем, кто ищет практический подход к созданию интерпретируемых моделей временных рядов.

Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Адаптивная периодическая сегментация (Окончание)
Нейросети в трейдинге: Адаптивная периодическая сегментация (Окончание)

Предлагаем погрузиться в захватывающий мир LightGTS — лёгкого, но мощного фреймворка для прогноза временных рядов, где адаптивная свёртка и RoPE‑кодирование сочетаются с инновационным методами внимания. В нашей статье вы найдёте детальное описание всех компонентов — от создания патчей до сложной смеси экспертов в декодере, готовых к интеграции в MQL5‑проекты. Откройте для себя, как LightGTS выводит автоматическую торговлю на новый уровень!

Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Адаптивная периодическая сегментация (Создание токенов)
Нейросети в трейдинге: Адаптивная периодическая сегментация (Создание токенов)

Предлагаем вам отправиться в захватывающее путешествие по миру адаптивного анализа финансовых временных рядов и узнать, как превратить сложный спектральный разбор и гибкую свёртку в реальные торговые сигналы. Вы увидите, как LightGTS слушает ритм рынка, подстраиваясь под его изменения шагом переменного окна, и как OpenCL-ускорение позволяет превратить вычисления в кратчайший путь к прибыльным решениям.

Kvannkvann 004603440
Kvannkvann 004603440 2025.08.30
004603440$
Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Адаптивная периодическая сегментация (LightGTS)
Нейросети в трейдинге: Адаптивная периодическая сегментация (LightGTS)

Предлагаем познакомиться с инновационной техникой адаптивного патчинга — способа гибко сегментировать временные ряды с учётом их внутренней периодичности. А также с техникой эффективного кодирования, позволяющего сохранять важные семантические характеристики при работе с данными разного масштаба. Эти методы открывают новые возможности для точной обработки сложных многомасштабных данных, характерных для финансовых рынков, и существенно повышают стабильность и обоснованность прогнозов.

Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Окончание)
Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Окончание)

Эта статья увлекательно покажет, как SwiGLU‑эмбеддинг раскрывает скрытые паттерны рынка, а разреженная смесь экспертов внутри Decoder‑Only Transformer делает прогнозы точнее при разумных вычислительных затратах. Мы подробно разбираем интеграцию Time‑MoE в MQL5 и OpenCL, шаг за шагом описываем настройку и обучение модели.

Dmitriy Gizlyk
パブリッシュされた記事Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Разреженная смесь экспертов)
Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Разреженная смесь экспертов)

Предлагаем познакомиться с практической реализацией блока разреженной смеси экспертов для временных рядов в вычислительной среде OpenCL. В статье шаг за шагом разбирается работа маскированной многооконной свёртки, а также организация градиентного обучения в условиях множественных информационных потоков.