
Cómo construir un EA que opere automáticamente (Parte 02): Inicio de la codificación
Aprenda a crear un EA que opere automáticamente de forma sencilla y segura. En el artículo anterior, presenté los primeros pasos que debe comprender antes de comenzar a crear un EA que negocie automáticamente. Lo mostré allí.

Cómo construir un EA que opere automáticamente (Parte 01): Conceptos y estructuras
Aprenda a crear un EA que opere automáticamente de forma sencilla y segura.

Redes neuronales: así de sencillo (Parte 29): Algoritmo actor-crítico con ventaja (Advantage actor-critic)
En los artículos anteriores de esta serie, nos familiarizamos con dos algoritmos de aprendizaje por refuerzo. Obviamente, cada uno de ellos tiene sus propias ventajas y desventajas. Como suele suceder en estos casos, se nos ocurre combinar ambos métodos en un algoritmo que incorporaría lo mejor de los dos, y así compensar las carencias de cada uno de ellos. En este artículo, hablaremos de dicho método.

Redes neuronales: así de sencillo (Parte 28): Algoritmo de gradiente de políticas
Continuamos analizando los métodos de aprendizaje por refuerzo. En el artículo anterior, nos familiarizamos con el método de aprendizaje Q profundo, en el que entrenamos un modelo para predecir la próxima recompensa dependiendo de la acción realizada en una situación particular. Luego realizamos una acción según nuestra política y la recompensa esperada, pero no siempre es posible aproximar la función Q, o su aproximación no ofrece el resultado deseado. En estos casos, los métodos de aproximación no se utilizan para funciones de utilidad, sino para una política (estrategia) de acciones directa. Precisamente a tales métodos pertenece el gradiente de políticas o policy gradient.

Redes neuronales: así de sencillo (Parte 24): Mejorando la herramienta para el Transfer Learning
En el último artículo, creamos una herramienta capaz de crear y editar arquitecturas de redes neuronales. Hoy querríamos proponerles continuar con el desarrollo de esta herramienta, para lograr que resulte más fácil de usar. En cierto modo, esto se aleja un poco de nuestro tema, pero estará de acuerdo con que la organización del espacio de trabajo desempeña un papel importante en el resultado final.

Redes neuronales: así de sencillo (Parte 23): Creamos una herramienta para el Transfer Learning
En esta serie de artículos, hemos mencionado el Aprendizaje por Transferencia más de una vez, pero hasta ahora no había sido más que una mención. Le propongo rellenar este vacío y analizar más de cerca el Aprendizaje por Transferencia.

Experimentos con redes neuronales (Parte 2): Optimización inteligente de una red neuronal
Las redes neuronales lo son todo. Vamos a comprobar en la práctica si esto es así. MetaTrader 5 como herramienta autosuficiente para el uso de redes neuronales en el trading. Una explicación sencilla.

Redes neuronales: así de sencillo (Parte 22): Aprendizaje no supervisado de modelos recurrentes
Continuamos analizando los algoritmos de aprendizaje no supervisado. Hoy hablaremos sobre el uso de autocodificadores en el entrenamiento de modelos recurrentes.

Redes neuronales: así de sencillo (Parte 21): Autocodificadores variacionales (VAE)
En el anterior artículo, vimos el algoritmo del autocodificador. Como cualquier otro algoritmo, tiene ventajas y desventajas. En la implementación original, el autocodificador se encarga de dividir los objetos de la muestra de entrenamiento tanto como sea posible. Y en este artículo, en cambio, hablaremos de cómo solucionar algunas de sus deficiencias.

Redes neuronales: así de sencillo (Parte 20): Autocodificadores
Continuamos analizando los algoritmos de aprendizaje no supervisado. El lector podría preguntarse sobre la relevancia de las publicaciones recientes en el tema de las redes neuronales. En este nuevo artículo, retomaremos el uso de las redes neuronales.

Desarrollando un EA comercial desde cero (Parte 22): Un nuevo sistema de órdenes (V)
Hoy seguiremos desarrollando el nuevo sistema de ordenes. No es nada fácil implementar un nuevo sistema, muchas veces nos encontramos con problemas que dificultan mucho el proceso, cuando suceden hay que parar y volver a analizar el rumbo que se está tomando.

Indicador CCI. Modernización y nuevas posibilidades
En este artículo, analizaremos la posibilidad de modernizar el indicador CCI. Además, presentaremos un ejemplo de modificación de este indicador.

Redes neuronales: así de sencillo (Parte 19): Reglas asociativas usando MQL5
Continuamos con el tema de la búsqueda de reglas asociativas. En el artículo anterior, vimos los aspectos teóricos de este tipo de problemas. En el presente artículo, mostraremos la implementación del método FP-Growth usando MQL5. Y también pondremos a prueba nuestra aplicación con datos reales.

Redes neuronales: así de sencillo (Parte 18): Reglas asociativas
Como continuación de esta serie, hoy presentamos otro tipo de tarea relacionada con los métodos de aprendizaje no supervisado: la búsqueda de reglas asociativas. Este tipo de tarea se usó por primera vez en el comercio minorista para analizar las cestas de la compra. En este artículo, hablaremos de las posibilidades que ofrece el uso de dichos algoritmos en el trading.

Trading de cuadrícula automatizado utilizando órdenes límite en la Bolsa de Moscú MOEX
Hoy vamos a desarrollar un asesor comercial en el lenguaje de estrategias comerciales MQL5 para MetaTrader 5 de la Bolsa de Moscú MOEX. El asesor comerciará con una estrategia de cuadrícula en el terminal MetaTrader 5 en los mercados de la Bolsa de Moscú MOEX; también incluirá el cierre de posiciones usando stop loss o take profit, y eliminará las órdenes pendientes al suceder ciertas condiciones del mercado.

Redes neuronales: así de sencillo (Parte 17): Reducción de la dimensionalidad
Seguimos analizando modelos de inteligencia artificial, y en particular, los algoritmos de aprendizaje no supervisado. Ya nos hemos encontrado con uno de los algoritmos de clusterización. Y en este artículo queremos compartir con ustedes una posible solución a los problemas de la reducción de la dimensionalidad.

Redes neuronales: así de sencillo (Parte 16): Uso práctico de la clusterización
En el artículo anterior, creamos una clase para la clusterización de datos. En este artículo, queremos compartir con el lector diferentes opciones de uso de los resultados obtenidos para resolver problemas prácticos en el trading.

Redes neuronales: así de sencillo (Parte 15): Clusterización de datos usando MQL5
Continuamos analizando el método de clusterización. En este artículo, crearemos una nueva clase CKmeans para implementar uno de los métodos de clusterización de k-medias más extendidos. Según los resultados de la prueba, el modelo ha podido identificar alrededor de 500 patrones.

Desarrollando un EA comercial desde cero (Parte 21): Un nuevo sistema de órdenes (IV)
Finalmente el sistema visual funcionará... aún no del todo. Aquí terminaremos de hacer los cambios básicos, y no serán pocos, serán muchos, y todos ellos necesarios, y todo el trabajo será bastante interesante.

Desarrollando un EA comercial desde cero (Parte 20): Un nuevo sistema de órdenes (III)
Continuemos con la implantación del nuevo sistema de órdenes. La creación de este sistema es algo que exige un buen dominio de MQL5, así como entender cómo funciona en realidad la plataforma MetaTrader 5 y qué recursos nos proporciona.

Redes neuronales: así de sencillo (Parte 14): Clusterización de datos
Lo confieso: ha pasado más de un año desde que publiqué el último artículo. En tanto tiempo, me ha sido posible repensar mucho, desarrollar nuevos enfoques. Y en este nuevo artículo, me gustaría alejarme un poco del método anteriormente usado de aprendizaje supervisado, y sugerir una pequeña inmersión en los algoritmos de aprendizaje no supervisado. En particular, vamos a analizar uno de los algoritmos de clusterización, las k-medias.

Desarrollando un EA comercial desde cero (Parte 19): Un nuevo sistema de órdenes (II)
Aquí vamos a desarrollar un sistema gráfico de órdenes, del tipo «vea lo que está pasando». Cabe decir que no partiremos de cero, sino que modificaremos el sistema existente añadiendo aún más objetos y eventos al gráfico del activo que estamos negociando.

Desarrollando un EA comercial desde cero (Parte 18): Un nuevo sistema de órdenes (I)
Esta es la primera parte del nuevo sistema de ordenes. Desde que este EA comenzó a tener su desarrollo documentado en artículos, ha sufrido varios cambios y mejoras, si bien ha mantenido el mismo modelo de sistema de órdenes en el gráfico.

Desarrollando un EA comercial desde cero (Parte 13): Times And Trade (II)
Hoy vamos a construir la segunda parte del sistema Times & Trade para analizar el mercado. En el artículo anterior Times & Trade ( I ) presenté un sistema alternativo para organizar un gráfico de manera que tengamos un indicador que nos permita interpretar las operaciones que se han ejecutado en el mercado lo más rápido posible.

Desarrollando un EA comercial desde cero (Parte 12): Time and Trade (I)
Vamos a crear un Time & Trade de rápida interpretación para para lectura de flujo ordenes. Esta es la primera parte en la que construiremos este sistema. En el próximo artículo completaremos el sistema con la información que falta, ya que para ello necesitaremos agregar varias cosas nuevas a nuestro código EA.

Desarrollando un EA comercial desde cero (Parte 11): Sistema de órdenes cruzadas
Creación de un sistema de órdenes cruzadas. Hay una clase de activos que les hace la vida muy difícil a los comerciantes, estos son los activos de contratos futuros, y ¿por qué le hacen la vida difícil al comerciante?

Desarrollando un EA comercial desde cero (Parte 09): Un salto conceptual (II)
Colocación del Chart Trade en una ventana flotante. En el artículo anterior creamos el sistema base para utilizar templates dentro de una ventana flotante.

Desarrollando un EA comercial desde cero (Parte 08): Un salto conceptual (I)
¿Cómo implementar una nueva funcionalidad de la forma más sencilla posible? Aquí daremos un paso atrás y luego daremos dos pasos adelante.

Desarrollando un EA comercial desde cero (Parte 07): Adición de el Volume At Price (I)
Este es uno de los indicadores más poderosos que existen. Para aquellos que operan y tratan de tener un cierto grado de asertividad, no pueden dejar de tener este indicador en su gráfico, aunque es más utilizado por aquellos que operan observando el flujo («tape reading») también puede ser utilizado por aquellos que utilizan sólo la acción del precio.

Múltiples indicadores en un gráfico (Parte 06): Convirtamos el MetaTrader 5 en un sistema RAD (II)
En el artículo anterior mostré cómo crear un Chart Trade utilizando los objetos de MetaTrader 5, por medio de la conversión de la plataforma en un sistema RAD. El sistema funciona muy bien, y creo que muchos han pensado en crear una librería para tener cada vez más funcionalidades en el sistema propuesto, y así lograr desarrollar un EA que sea más intuitivo a la vez que tenga una interfaz más agradable y sencilla de utilizar.

Múltiples indicadores en un gráfico (Parte 05): Convirtamos el MetaTrader 5 en un sistema RAD (I)
A pesar de no saber programar, muchas personas son bastante creativas y tienen grandes ideas, pero la falta de conocimientos o de entendimiento sobre la programación les impide hacer algunas cosas. Aprenda a crear un Chart Trade, pero utilizando la propia plataforma MT5, como si fuera un IDE.

Cómo hacer el gráfico más interesante: Adicionando un fondo de pantalla
Muchos terminales de trabajo contienen alguna imagen representativa que muestra algo sobre el usuario, estas imágenes hacen que el escritorio sea más bonito y alegre. Descubra cómo hacer el gráfico más interesante poniendo un fondo de pantalla.

Aprenda por qué y cómo diseñar su sistema de trading algorítmico
En este artículo, mostraremos los fundamentos de MQL que permitirán a los tráders principiantes diseñar su propio sistema de trading algorítmico (Asesor Experto) mediante el diseño de un sistema de trading algorítmico simple después de mencionar algunas ideas básicas de MQL5

Matrices y vectores en MQL5
La matriz y el vector de tipos de datos especiales nos permiten escribir un código próximo a la notación matemática. Esto elimina la necesidad de crear ciclos anidados y recordar la indexación correcta de las matrices que participan en los cálculos, aumentando la fiabilidad y la velocidad del desarrollo de programas complejos.

Websockets para MetaTrader 5 — Usando la API de Windows
En este artículo, usaremos WinHttp.dll para crear un cliente de websocket para los programas de MetaTrader 5. El cliente se implementará finalmente como una clase, y también se probará contra la API de websocket de Binary.com.

¿Cómo elegir correctamente un asesor en el Mercado?
En este artículo, analiceremos los puntos a los que debemos prestar atención en primer lugar a la hora de comprar un asesor. También buscaremos formas de aumentar los beneficios y, lo que es más importante, de gastar el dinero de forma inteligente y seguir ganando con ello. Además, tras finalizar la lectura, comprenderá que puede ganar dinero incluso con productos simples y gratuitos.

Casi un constructor para crear asesores
Ofrecemos nuestro propio conjunto de funciones comerciales como asesor listo para usar. El método presentado nos permite obtener multitud de estrategias comerciales con solo añadir indicadores y cambiar los parámetros de entrada.

Usando AutoIt con MQL5
Descripción breve. En este artículo, exploraremos la creación de scripts del terminal MetraTrader 5 integrando MQL5 con AutoIt. En el presente material, abarcaremos cómo automatizar varias tareas manipulando la interfaz de usuario de los terminales, y también presentaremos una clase que utiliza la biblioteca AutoItX.

Stoploss de PriceAction Fijo o RSI fijo (Smart StopLoss)
Los Stop Loss son una herramienta importante en cuanto a la gestión de dinero en el trading. El uso efectivo de stop-loss, take profit y el tamaño de lote puede hacer que un tráder sea más consistente en el comercio y, sobre todo, que logre mayor rentabilidad. Aunque el stop-loss es una gran herramienta, existen desafíos derivados de su uso. El principal es la caza de stop-loss. Este artículo analiza cómo reducir la caza de stop-loss en el trading y la compara con el uso clásico de stop-loss para determinar su rentabilidad.


Consejos de un programador profesional (parte II): Organizando el almacenamiento y el intercambio de parámetros entre el experto, los scripts y los programas externos
Consejos de un programador profesional sobre métodos, técnicas y herramientas auxiliares para facilitar la programación. En esta ocasión, hablaremos de los parámetros que podemos restaurar tras reiniciar (cerrar) el terminal. Todos los ejemplos son en realidad trozos del código operativo del proyecto Cayman del propio autor.