Aufbau des Kerzenmodells Trend-Constraint (Teil 5): Nachrichtensystem (Teil II)
Heute besprechen wir eine funktionierende Telegram-Integration für MetaTrader 5 Indikator-Benachrichtigungen, die die Leistungsfähigkeit von MQL5 in Zusammenarbeit mit Python und der Telegram Bot API nutzt. Wir werden alles im Detail erklären, damit niemand etwas verpasst. Am Ende dieses Projekts werden Sie wertvolle Erkenntnisse gewonnen haben, die Sie in Ihren Projekten anwenden können.
Integrieren Sie Ihr eigenes LLM in einen EA (Teil 5): Handelsstrategie mit LLMs(IV) entwickeln und testen - Test der Handelsstrategie
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 3): Überarbeitung der Architektur
Wir haben bereits einige Fortschritte bei der Entwicklung eines Mehrwährungs-EAs mit mehreren parallel arbeitenden Strategien gemacht. In Anbetracht der gesammelten Erfahrungen sollten wir die Architektur unserer Lösung überprüfen und versuchen, sie zu verbessern, bevor wir zu weit vorpreschen.
Datenwissenschaft und maschinelles Lernen (Teil 24): Zeitreihenprognose im Forex mit regulären AI-Modellen
Auf den Devisenmärkten ist es sehr schwierig, den zukünftigen Trend vorherzusagen, ohne eine Vorstellung von der Vergangenheit zu haben. Nur sehr wenige maschinelle Lernmodelle sind in der Lage, Vorhersagen zu treffen, indem sie vergangene Werte berücksichtigen. In diesem Artikel werden wir erörtern, wie wir klassische (Nicht-Zeitreihen-) Modelle der Künstlichen Intelligenz nutzen können, um den Markt zu schlagen
Automatisieren von Handelsstrategien in MQL5 (Teil 14): Stapelstrategie für den Handel mit statistischen MACD-RSI-Methoden
In diesem Artikel stellen wir die Stapelstrategie des Handels (Trading-Layering) vor, die MACD- und RSI-Indikatoren mit statistischen Methoden kombiniert, um den dynamischen Handel in MQL5 zu automatisieren. Wir untersuchen die Architektur dieses kaskadierenden Ansatzes, erläutern seine Implementierung anhand wichtiger Codesegmente und geben dem Leser eine Anleitung für die Backtests, um die Leistung zu optimieren. Abschließend wird das Potenzial der Strategie hervorgehoben und die Voraussetzungen für weitere Verbesserungen im automatisierten Handel geschaffen.
Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 7): Signale von ZigZag und dem Awesome Oszillator
Der Multi-Currency Expert Advisor in diesem Artikel ist ein Expert Advisor für den automatisierten Handel, der den ZigZag-Indikator und den Awesome Oscillator als Signale verwendet.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 1): Zusammenarbeit von mehreren Handelsstrategien
Es gibt eine ganze Reihe von verschiedenen Handelsstrategien. Daher kann es sinnvoll sein, mehrere Strategien parallel anzuwenden, um Risiken zu diversifizieren und die Stabilität der Handelsergebnisse zu erhöhen. Wenn jedoch jede Strategie als separater Expert Advisor (EA) implementiert wird, wird die Verwaltung ihrer Arbeit auf einem Handelskonto sehr viel schwieriger. Um dieses Problem zu lösen, wäre es sinnvoll, den Betrieb verschiedener Handelsstrategien innerhalb eines einzigen EA zu implementieren.
Datenwissenschaft und maschinelles Lernen (Teil 20): Algorithmische Handelseinblicke, eine Gegenüberstellung von LDA und PCA in MQL5
Entdecken Sie die Geheimnisse dieser leistungsstarken Dimensionsreduktionstechniken, indem wir ihre Anwendungen in der MQL5-Handelsumgebung analysieren. Vertiefen Sie sich in die Feinheiten der linearen Diskriminanzanalyse (LDA) und der Hauptkomponentenanalyse (PCA) und gewinnen Sie ein tiefes Verständnis für deren Auswirkungen auf die Strategieentwicklung und Marktanalyse,
Automatisieren von Handelsstrategien in MQL5 (Teil 5): Die Entwicklung der Strategie „Adaptive Crossover RSI Trading Suite“
In diesem Artikel entwickeln wir ein System für die Strategie „Adaptive Crossover RSI Trading Suite“, das das Kreuzen der gleitende Durchschnitte mit Periodenlängen von 14 und 50 als Signale verwendet, die durch einen 14-periodischen RSI-Filter bestätigt werden. Das System umfasst einen Filter für den Handelstag, Signalpfeile mit Kommentaren und ein Echtzeit-Dashboard zur Überwachung. Dieser Ansatz gewährleistet Präzision und Anpassungsfähigkeit beim automatisierten Handel.
Die Strategie des Handel eines Liquiditätshungers
Die Strategie des Handel eines Liquiditätshungers (liquidity grab) ist eine Schlüsselkomponente von Smart Money Concepts (SMC), die darauf abzielt, die Aktionen institutioneller Marktteilnehmer zu identifizieren und auszunutzen. Dabei werden Bereiche mit hoher Liquidität, wie z. B. Unterstützungs- oder Widerstandszonen, ins Visier genommen, in denen große Aufträge Kursbewegungen auslösen können, bevor der Markt seinen Trend wieder aufnimmt. In diesem Artikel wird das Konzept des Liquiditätshungers im Detail erklärt und der Entwicklungsprozess des Expert Advisor der Liquiditätshunger-Handelsstrategie in MQL5 skizziert.
Automatisieren von Handelsstrategien in MQL5 (Teil 6): Beherrschen der Erkennung von Auftragsblöcken für den Handel des Smart Money
In diesem Artikel automatisieren wir das Erkennen von Auftragsblöcken in MQL5 mithilfe der reinen Preisaktionsanalyse. Wir definieren Auftragsblöcke, implementieren ihre Erkennung und integrieren die automatische Handelsausführung. Schließlich führen wir einen Backtest der Strategie durch, um ihre Leistung zu bewerten.
Handel mit dem MQL5 Wirtschaftskalender (Teil 1): Beherrschung der Funktionen des MQL5-Wirtschaftskalenders
In diesem Artikel untersuchen wir, wie der MQL5-Wirtschaftskalender für den Handel verwendet werden kann, indem wir zunächst seine Kernfunktionen verstehen. Anschließend implementieren wir wichtige Funktionen des Wirtschaftskalenders in MQL5, um relevante Nachrichtendaten für Handelsentscheidungen zu extrahieren. Abschließend zeigen wir auf, wie diese Informationen genutzt werden können, um Handelsstrategien effektiv zu verbessern.
Erstellen einer interaktiven grafischen Nutzeroberfläche in MQL5 (Teil 2): Hinzufügen von Steuerelementen und Reaktionsfähigkeit
Die Erweiterung des MQL5-GUI-Panels um dynamische Funktionen kann die Handelserfahrung für die Nutzer erheblich verbessern. Durch die Einbindung interaktiver Elemente, Hover-Effekte und Datenaktualisierungen in Echtzeit wird das Panel zu einem leistungsstarken Werkzeug für moderne Händler.
Entwicklung eines Replay System (Teil 27): Expert Advisor Projekt — Die Klasse C_Mouse (II)
In diesem Artikel werden wir die Klasse C_Mouse implementieren. Es bietet die Möglichkeit, auf höchstem Niveau zu programmieren. Wenn man über High-Level- oder Low-Level-Programmiersprachen spricht, geht es jedoch nicht darum, obszöne Wörter oder Jargon in den Code aufzunehmen. Es ist genau andersherum. Wenn wir von High-Level- oder Low-Level-Programmierung sprechen, meinen wir, wie leicht oder schwer der Code für andere Programmierer zu verstehen ist.
Entwicklung eines Replay Systems — Marktsimulation (Teil 24): FOREX (V)
Heute werden wir eine Einschränkung aufheben, die bisher Simulationen auf der Grundlage des letzten Kurses verhindert hat, und einen neuen Einstiegspunkt speziell für diese Art von Simulationen einführen. Der gesamte Funktionsmechanismus wird auf den Prinzipien des Devisenmarktes beruhen. Der Hauptunterschied in diesem Verfahren ist die Trennung von Bid- und Last-Simulationen. Es ist jedoch wichtig zu beachten, dass die Methode zur Randomisierung der Zeit und zur Anpassung an die Klasse C_Replay in beiden Simulationen identisch bleibt. Das ist gut, denn Änderungen in einem Modus führen automatisch zu Verbesserungen im anderen, vor allem wenn es um die Handhabung der Zeit zwischen den Ticks geht.
Entwicklung eines Replay Systems — Marktsimulation (Teil 25): Vorbereitungen für die nächste Phase
In diesem Artikel schließen wir die erste Phase der Entwicklung unseres Replay- und Simulationssystems ab. Liebe Leserin, lieber Leser, damit bestätige ich, dass das System ein fortgeschrittenes Niveau erreicht hat und den Weg für die Einführung neuer Funktionen ebnet. Ziel ist es, das System noch weiter zu bereichern und es zu einem leistungsfähigen Instrument für die Forschung und Entwicklung von Marktanalysen zu machen.
Deep Learning GRU model with Python to ONNX with EA, and GRU vs LSTM models
We will guide you through the entire process of DL with python to make a GRU ONNX model, culminating in the creation of an Expert Advisor (EA) designed for trading, and subsequently comparing GRU model with LSTN model.
Implementierung des Deus EA: Automatisierter Handel mit RSI und gleitenden Durchschnitten in MQL5
Dieser Artikel beschreibt die Schritte zur Implementierung des Deus EA, der auf den Indikatoren RSI und Gleitender Durchschnitt zur Steuerung des automatisierten Handels basiert.
Entwicklung eines Wiedergabesystems — Marktsimulation (Teil 21): FOREX (II)
Wir werden weiterhin ein System für die Arbeit auf dem FOREX-Markt aufbauen. Um dieses Problem zu lösen, müssen wir zuerst das Laden der Ticks deklarieren, bevor wir die vorherigen Balken laden. Dies löst zwar das Problem, zwingt den Nutzer aber gleichzeitig dazu, sich an eine bestimmte Struktur in der Konfigurationsdatei zu halten, was ich persönlich nicht sehr sinnvoll finde. Der Grund dafür ist, dass wir durch die Entwicklung eines Programms, das für die Analyse und Ausführung der Konfigurationsdatei verantwortlich ist, dem Nutzer die Möglichkeit geben können, die von ihm benötigten Elemente in beliebiger Reihenfolge zu deklarieren.
Aufbau des Kerzenmodells Trend Constraint (Teil 9): Expert Advisor für mehrere Strategien (II)
Die Zahl der Strategien, die in einen Expert Advisor integriert werden können, ist praktisch unbegrenzt. Jede zusätzliche Strategie erhöht jedoch die Komplexität des Algorithmus. Durch die Einbeziehung mehrerer Strategien kann sich ein Expert Advisor besser an unterschiedliche Marktbedingungen anpassen, was seine Rentabilität erhöhen kann. Heute werden wir uns mit der Implementierung von MQL5 für eine der bekannten, von Richard Donchian entwickelten Strategien befassen, da wir die Funktionalität unseres Trend Constraint Expert weiter verbessern wollen.
Automatisieren von Handelsstrategien in MQL5 (Teil 13): Aufbau eines Kopf-Schulter-Handelsalgorithmus
In diesem Artikel automatisieren wir das Muster aus Kopf und Schultern in MQL5. Wir analysieren seine Architektur, implementieren einen EA, um ihn zu erkennen und zu handeln, und führen einen Backtest der Ergebnisse durch. Der Prozess offenbart einen praktischen Handelsalgorithmus, der noch verfeinert werden kann.
Entwicklung eines Replay Systems — Marktsimulation (Teil 23): FOREX (IV)
Jetzt erfolgt die Erstellung an der gleichen Stelle, an der wir die Ticks in Balken umgewandelt haben. Wenn also bei der Konvertierung etwas schief geht, werden wir den Fehler sofort bemerken. Dies liegt daran, dass derselbe Code, der die 1-Minuten-Balken während des schnellen Vorlaufs auf dem Chart platziert, auch für das Positionierungssystem verwendet wird, um die Balken während der normalen Performance zu platzieren. Mit anderen Worten: Der Code, der für diese Aufgabe zuständig ist, wird nirgendwo anders dupliziert. Auf diese Weise erhalten wir ein viel besseres System sowohl für die Instandhaltung als auch für die Verbesserung.
Entwicklung eines Replay Systems — Marktsimulation (Teil 22): FOREX (III)
Obwohl dies der dritte Artikel zu diesem Thema ist, muss ich für diejenigen, die den Unterschied zwischen dem Aktienmarkt und dem Devisenmarkt noch nicht verstanden haben, erklären: Der große Unterschied besteht darin, dass es auf dem Devisenmarkt keine Informationen über einige Punkte gibt, die im Laufe des Handels tatsächlich aufgetreten sind.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 23): CNNs
Convolutional Neural Networks sind ein weiterer Algorithmus des maschinellen Lernens, der sich darauf spezialisiert hat, mehrdimensionale Datensätze in ihre wichtigsten Bestandteile zu zerlegen. Wir sehen uns an, wie dies typischerweise erreicht wird, und untersuchen eine mögliche Anwendung für Händler in einer anderen Signalklasse des MQL5-Assistenten.
Risikobalance beim gleichzeitigen Handel von mehreren Handelsinstrumenten
Dieser Artikel ermöglicht es Anfängern, ein Skript für den Risikoausgleich beim gleichzeitigen Handel von mehreren Handelsinstrumenten von Grund auf zu schreiben. Darüber hinaus können erfahrene Nutzer neue Ideen für die Umsetzung ihrer Lösungen in Bezug auf die in diesem Artikel vorgeschlagenen Optionen erhalten.
Aufbau des Kerzenmodells Trend-Constraint (Teil 7): Verfeinerung unseres Modells für die EA-Entwicklung
In diesem Artikel werden wir uns mit der detaillierten Vorbereitung unseres Indikators für die Entwicklung von Expert Advisor (EA) befassen. Unsere Diskussion wird weitere Verfeinerungen der aktuellen Version des Indikators umfassen, um seine Genauigkeit und Funktionsweise zu verbessern. Außerdem werden wir neue Funktionen einführen, die Ausstiegspunkte markieren und damit eine Einschränkung der Vorgängerversion beheben, die nur Einstiegspunkte kennzeichnete.
Datenwissenschaft und ML (Teil 28): Vorhersage mehrerer Futures für EURUSD mithilfe von KI
Bei vielen Modellen der künstlichen Intelligenz ist es üblich, einen einzigen Zukunftswert vorherzusagen. In diesem Artikel werden wir uns jedoch mit der leistungsstarken Technik der Verwendung von maschinellen Lernmodellen zur Vorhersage mehrerer zukünftiger Werte befassen. Dieser Ansatz, der als mehrstufige Prognose bekannt ist, ermöglicht es uns, nicht nur den Schlusskurs von morgen, sondern auch den von übermorgen und darüber hinaus vorherzusagen. Durch die Beherrschung mehrstufiger Prognosen können Händler und Datenwissenschaftler tiefere Einblicke gewinnen und fundiertere Entscheidungen treffen, was ihre Vorhersagefähigkeiten und strategische Planung erheblich verbessert.
Risikomanager für den algorithmischen Handel
Ziel dieses Artikels ist es, die Notwendigkeit des Einsatzes eines Risikomanagers zu beweisen und die Prinzipien der Risikokontrolle im algorithmischen Handel in einer eigenen Klasse zu implementieren, damit jeder die Wirksamkeit des Ansatzes der Risikostandardisierung im Intraday-Handel und bei Investitionen auf den Finanzmärkten überprüfen kann. In diesem Artikel werden wir eine Risikomanager-Klasse für den algorithmischen Handel erstellen. Dies ist eine logische Fortsetzung des vorangegangenen Artikels, in dem wir die Erstellung eines Risikomanagers für den manuellen Handel besprochen haben.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 10): Erstellen von Objekten aus einer Zeichenkette
Der EA-Entwicklungsplan umfasst mehrere Stufen, wobei die Zwischenergebnisse in der Datenbank gespeichert werden. Sie können von dort nur als Zeichenketten oder Zahlen wieder abgerufen werden, nicht als Objekte. Wir brauchen also eine Möglichkeit, die gewünschten Objekte im EA anhand der aus der Datenbank gelesenen Strings neu zu erstellen.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 16): Auswirkungen unterschiedlicher Kursverläufe auf die Testergebnisse
Es wird erwartet, dass der in der Entwicklung befindliche EA gute Ergebnisse beim Handel mit verschiedenen Brokern zeigt. Aber im Moment haben wir die Kurse eines MetaQuotes-Demokontos verwendet, um Tests durchzuführen. Lassen Sie uns sehen, ob unser EA bereit ist, auf einem Handelskonto mit anderen Kursen zu arbeiten, als die, die wir während der Tests und der Optimierung verwendet haben.
Erstellen eines Administrator-Panels für den Handel in MQL5 (Teil III): Verbesserung der grafischen Nutzeroberfläche mit visuellem Styling (I)
In diesem Artikel werden wir uns auf die visuelle Gestaltung der grafischen Nutzeroberfläche (GUI) unseres Trading Administrator Panels mit MQL5 konzentrieren. Wir werden verschiedene in MQL5 verfügbare Techniken und Funktionen erkunden, die eine Anpassung und Optimierung der Schnittstelle ermöglichen, um sicherzustellen, dass sie den Bedürfnissen der Händler entspricht und gleichzeitig eine attraktive Ästhetik beibehält.
Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 1): Der Indikator
Dieser Artikel beschreibt die Erstellung eines MQL5-Systems zur Erkennung von Marktregimen unter Verwendung statistischer Methoden wie Autokorrelation und Volatilität. Es enthält Code für Klassen zur Klassifizierung von Trend-, Spannen- und Volatilitätsbedingungen sowie einen nutzerdefinierten Indikator.
Einführung in MQL5 (Teil 16): Aufbau von Expert Advisors mit technischen Chart-Mustern
Dieser Artikel führt Anfänger in den Aufbau eines MQL5 Expert Advisors ein, der ein klassisches technisches Chart-Muster - Kopf und Schultern - identifiziert und handelt. Sie erfahren, wie Sie das Muster anhand der Preisentwicklung erkennen, es auf dem Chart einzeichnen, Einstiegs-, Stop-Loss- und Take-Profit-Levels festlegen und die Handelsausführung auf der Grundlage des Musters automatisieren können.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 17): Weitere Vorbereitung auf den realen Handel
Derzeit verwendet unser EA die Datenbank, um Initialisierungs-Strings für einzelne Instanzen von Handelsstrategien zu erhalten. Die Datenbank ist jedoch recht groß und enthält viele Informationen, die für den eigentlichen EA-Betrieb nicht benötigt werden. Versuchen wir, die Funktionalität des EA ohne eine obligatorische Verbindung zur Datenbank zu gewährleisten.
Finden von nutzerdefinierten Währungspaar-Mustern in Python mit MetaTrader 5
Gibt es auf dem Devisenmarkt wiederkehrende Muster und Regelmäßigkeiten? Ich beschloss, mein eigenes System zur Musteranalyse mit Python und MetaTrader 5 zu entwickeln. Eine Art Symbiose aus Mathematik und Programmierung zur Eroberung des Forex.
Automatisieren von Handelsstrategien in MQL5 (Teil 7): Aufbau eines Raster-Handel EA mit dynamischer Losgrößen-Skalierung
In diesem Artikel bauen wir einen Expert Advisor in MQL5 für einen Raster-Handel, der eine dynamische Los-Skalierung verwendet. Wir behandeln die Strategieentwicklung, die Code-Implementierung und den Backtest-Prozess. Abschließend vermitteln wir wichtige Erkenntnisse und bewährte Verfahren zur Optimierung des automatisierten Handelssystems.
Hochfrequenz-Arbitrage-Handelssystem in Python mit MetaTrader 5
In diesem Artikel werden wir ein Arbitrationssystem erstellen, das in den Augen der Broker legal bleibt, Tausende von synthetischen Preisen auf dem Forex-Markt erstellt, sie analysiert und erfolgreich mit Gewinn handelt.
Von Python zu MQL5: Eine Reise in quanteninspirierte Handelssysteme
Der Artikel befasst sich mit der Entwicklung eines quanteninspirierten Handelssystems, das von einem Python-Prototyp zu einer MQL5-Implementierung für den realen Handel übergeht. Das System nutzt die Prinzipien der Quanteninformatik wie Überlagerung und Verschränkung, um Marktzustände zu analysieren, obwohl es auf klassischen Computern mit Quantensimulatoren läuft. Zu den wichtigsten Merkmalen gehören ein Drei-Qubit-System zur gleichzeitigen Analyse von acht Marktzuständen, 24-Stunden-Rückblicke und sieben technische Indikatoren für die Marktanalyse. Auch wenn die Genauigkeitsraten bescheiden erscheinen mögen, bieten sie in Verbindung mit geeigneten Risikomanagementstrategien einen erheblichen Vorteil.
Entwicklung des Swing Entries Monitoring (EA)
Wenn sich das Jahr dem Ende zuneigt, denken langfristige Händler oft über die Geschichte des Marktes nach, um sein Verhalten und seine Trends zu analysieren und potenzielle zukünftige Bewegungen zu prognostizieren. In diesem Artikel befassen wir uns mit der Entwicklung eines Expert Advisors (EA) zur langfristigen Überwachung des Einstiegs mit MQL5. Ziel ist es, das Problem verpasster langfristiger Handelsmöglichkeiten zu lösen, das durch manuellen Handel und das Fehlen automatischer Überwachungssysteme verursacht wird. Wir werden eines der am häufigsten gehandelten Paare als Beispiel verwenden, um eine Strategie zu entwickeln und unsere Lösung effektiv zu gestalten.
Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 2): Expert Advisor
Dieser Artikel beschreibt den Aufbau eines adaptiven Expert Advisors (MarketRegimeEA) unter Verwendung des Regime-Detektors aus Teil 1. Er wechselt automatisch die Handelsstrategien und Risikoparameter für steigende, volatile oder Seitwärtsmärkte. Praktische Optimierung, Handhabung von Übergängen und ein Indikator für mehrere Zeitrahmen sind enthalten.