Andrey Dik
Andrey Dik
4.4 (26)
  • Информация
12+ лет
опыт работы
5
продуктов
87
демо-версий
15
работ
0
сигналов
0
подписчиков
РАССМОТРЮ ПРЕДЛОЖЕНИЯ ПО ИЗДАНИЮ КНИГИ (УЧЕБНОГО ПОСОБИЯ) ОБ АЛГОРИТМАХ ОПТИМИЗАЦИИ.

Группа для общения по вопросам оптимизации и бесплатного тестирования продуктов: https://t.me/+vazsAAcney4zYmZi
Внимание! Появились мои двойники в телеграм, мой настоящий ник @JQS_aka_Joo

Мой github с алгоритмами оптимизации: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

Все мои публикации: https://www.mql5.com/en/users/joo/publications

Разрабатываю системы по технологиям машинного обучения с 2007 года и в области искусственного
интеллекта, оптимизации и прогнозирования.

Принимал активное участие в развитии платформы МТ5, таких как введение поддержки универсальных параллельных
вычислений на GPU и CPU с OpenCL, тестирование и бектестинг распределённых
вычислений в локальной сети и облаке при оптимизации в МТ5, мои тестовые функции входят в штатную поставку терминала.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
Мои продукты:
https://www.mql5.com/en/users/joo/seller

Рекомендуемые брокеры:
https://rbfxdirect.com/ru/lk/?a=dnhp
Andrey Dik
Опубликовал статью Роль качества генератора случайных чисел в эффективности алгоритмов оптимизации
Роль качества генератора случайных чисел в эффективности алгоритмов оптимизации

В этой статье мы рассмотрим генератор случайных чисел Mersenne Twister и сравним со стандартным в MQL5. Узнаем влияние качества случайных чисел генераторов на результаты алгоритмов оптимизации.

Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Алгоритм оптимизации китов (Whale Optimization Algorithm, WOA)
Популяционные алгоритмы оптимизации: Алгоритм оптимизации китов (Whale Optimization Algorithm, WOA)

Алгоритм оптимизации китов (WOA) - это метаэвристический алгоритм, вдохновленный поведением и охотничьими стратегиями горбатых китов. Основная идея WOA заключается в имитации так называемого "пузырькового сетевого" метода кормления, при котором киты создают пузыри вокруг добычи, чтобы затем нападать на нее в спиральном движении.

Andrey Dik
Опубликовал статью Гибридизация популяционных алгоритмов. Последовательная и параллельная схема
Гибридизация популяционных алгоритмов. Последовательная и параллельная схема

В статье мы погрузимся в мир гибридизации алгоритмов оптимизации, рассмотрев три ключевых типа: смешивание стратегий, последовательную и параллельную гибридизации. Мы проведем серию экспериментов, сочетая и тестируя соответствующие алгоритмы оптимизации.

Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Устойчивость к застреванию в локальных экстремумах (Часть II)
Популяционные алгоритмы оптимизации: Устойчивость к застреванию в локальных экстремумах (Часть II)

Продолжение эксперимента, цель которого - исследовать поведение популяционных алгоритмов оптимизации в контексте их способности эффективно покидать локальные минимумы при низком разнообразии в популяции и достигать глобальных максимумов. Результаты исследования.

Andrey Dik
AO Core Чтобы обеспечить самооптимизацию советника для реализации любых требуемых возможностей и функциональностей, используется схема, представленная на рисунке 1. На временной шкале "История" советник позиционируется в точке "время сейчас", где принимается решение об оптимизации...
Andrey Dik
AO Core To ensure self-optimization of the advisor for implementing any required capabilities and functionalities, the scheme presented in Figure 1 is employed. On the "History" timeline, the advisor is positioned at the "time now" point where the optimization decision is made...
Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Устойчивость к застреванию в локальных экстремумах (Часть I)
Популяционные алгоритмы оптимизации: Устойчивость к застреванию в локальных экстремумах (Часть I)

Эта статья представляет уникальный эксперимент, цель которого - исследовать поведение популяционных алгоритмов оптимизации в контексте их способности эффективно покидать локальные минимумы при низком разнообразии в популяции и достигать глобальных максимумов. Работа в этом направлении позволит глубже понять, какие конкретные алгоритмы могут успешно продолжать поиск из координат, установленных пользователем в качестве отправной точки, и какие факторы влияют на их успешность в этом процессе.

Andrey Dik
Опубликовал статью Базовый класс популяционных алгоритмов как основа эффективной оптимизации
Базовый класс популяционных алгоритмов как основа эффективной оптимизации

Уникальная исследовательская попытка объединения разнообразных популяционных алгоритмов в единый класс с целью упрощения применения методов оптимизации. Этот подход не только открывает возможности для разработки новых алгоритмов, включая гибридные варианты, но и создает универсальный базовый стенд для тестирования. Этот стенд становится ключевым инструментом для выбора оптимального алгоритма в зависимости от конкретной задачи.

Andrey Dik
Опубликовал статью Использование алгоритмов оптимизации для настройки параметров советника "на лету"
Использование алгоритмов оптимизации для настройки параметров советника "на лету"

В статье рассматриваются практические аспекты использования алгоритмов оптимизации для поиска наилучших параметров советников "на лету", виртуализация торговых операций и логики советника. Данная статья может быть использована как своеобразная инструкция для внедрения алгоритмов оптимизации в торгового советника.

Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Искусственные мультисоциальные поисковые объекты (artificial Multi-Social search Objects, MSO)
Популяционные алгоритмы оптимизации: Искусственные мультисоциальные поисковые объекты (artificial Multi-Social search Objects, MSO)

Продолжение предыдущей статьи как развитие идеи социальных групп. В новой статье исследуется эволюция социальных групп с использованием алгоритмов перемещения и памяти. Результаты помогут понять эволюцию социальных систем и применить их в оптимизации и поиске решений.

Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Эволюция социальных групп (Evolution of Social Groups, ESG)
Популяционные алгоритмы оптимизации: Эволюция социальных групп (Evolution of Social Groups, ESG)

В статье рассмотрим принцип построения многопопуляционных алгоритмов и в качестве примера такого вида алгоритмов разберём Эволюцию социальных групп (ESG), новый авторский алгоритм. Мы проанализируем основные концепции, механизмы взаимодействия популяций и преимущества этого алгоритма, а также рассмотрим его производительность в задачах оптимизации.

Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Бинарный генетический алгоритм (Binary Genetic Algorithm, BGA). Часть II
Популяционные алгоритмы оптимизации: Бинарный генетический алгоритм (Binary Genetic Algorithm, BGA). Часть II

В этой статье мы рассмотрим бинарный генетический алгоритм (BGA), который моделирует естественные процессы, происходящие в генетическом материале у живых существ в природе.

Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Бинарный генетический алгоритм (Binary Genetic Algorithm, BGA). Часть I
Популяционные алгоритмы оптимизации: Бинарный генетический алгоритм (Binary Genetic Algorithm, BGA). Часть I

В этой статье мы проведем исследование различных методов, применяемых в бинарных генетических алгоритмах и других популяционных алгоритмах. Мы рассмотрим основные компоненты алгоритма, такие как селекция, кроссовер и мутация, а также их влияние на процесс оптимизации. Кроме того, мы изучим способы представления информации и их влияние на результаты оптимизации.

Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Алгоритмы искусственной микро-иммунной системы (Micro Artificial immune system, Micro-AIS)
Популяционные алгоритмы оптимизации: Алгоритмы искусственной микро-иммунной системы (Micro Artificial immune system, Micro-AIS)

Статья рассказывает о методе оптимизации, основанном на принципах функционирования иммунной системы организма — Micro Artificial Immune System (Micro-AIS) — модификацию AIS. Micro-AIS использует более простую модель иммунной системы и простые операции обработки иммунной информации. Статья также обсуждает преимущества и недостатки Micro-AIS по сравнению с обычным AIS.

Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Гибридный алгоритм оптимизации бактериального поиска с генетическим алгоритмом (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)
Популяционные алгоритмы оптимизации: Гибридный алгоритм оптимизации бактериального поиска с генетическим алгоритмом (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)

В статье представлен новый подход к решению оптимизационных задач, путём объединения идей алгоритмов оптимизации бактериального поиска пищи (BFO) и приёмов, используемых в генетическом алгоритме (GA), в гибридный алгоритм BFO-GA. Он использует роение бактерий для глобального поиска оптимального решения и генетические операторы для уточнения локальных оптимумов. В отличие от оригинального BFO бактерии теперь могут мутировать и наследовать гены.

Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Алгоритмы эволюционных стратегий (Evolution Strategies, (μ,λ)-ES и (μ+λ)-ES)
Популяционные алгоритмы оптимизации: Алгоритмы эволюционных стратегий (Evolution Strategies, (μ,λ)-ES и (μ+λ)-ES)

В этой статье будет рассмотрена группа алгоритмов оптимизации, известных как "Эволюционные стратегии" (Evolution Strategies или ES). Они являются одними из самых первых популяционных алгоритмов, использующих принципы эволюции для поиска оптимальных решений. Будут представлены изменения, внесенные в классические варианты ES, а также пересмотрена тестовая функция и методика стенда для алгоритмов.

Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Изменяем форму и смещаем распределения вероятностей и тестируем на "Умном головастике" (Smart Cephalopod, SC)
Популяционные алгоритмы оптимизации: Изменяем форму и смещаем распределения вероятностей и тестируем на "Умном головастике" (Smart Cephalopod, SC)

В данной статье исследуется влияние изменения формы распределений вероятностей на производительность алгоритмов оптимизации. Мы проводим эксперименты на тестовом алгоритме 'Умный головастик' (SC), чтобы оценить эффективность различных распределений вероятностей в контексте оптимизационных задач.

Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Алгоритм имитации изотропного отжига (Simulated Isotropic Annealing, SIA). Часть II
Популяционные алгоритмы оптимизации: Алгоритм имитации изотропного отжига (Simulated Isotropic Annealing, SIA). Часть II

Первая часть статьи была посвящена известному и популярному алгоритму - имитации отжига, были рассмотрены его достоинства и подробно описаны недостатки. Вторая часть статьи посвящена кардинальному преобразованию алгоритма, его перерождению в новый алгоритм оптимизации "имитации изотропного отжига, SIA".

Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Алгоритм имитации отжига (Simulated Annealing, SA). Часть I
Популяционные алгоритмы оптимизации: Алгоритм имитации отжига (Simulated Annealing, SA). Часть I

Алгоритм имитации отжига (Simulated Annealing) является метаэвристикой, вдохновленной процессом отжига металлов. В нашей статье проведем тщательный анализ алгоритма и покажем, как многие распространенные представления и мифы, вокруг этого наиболее популярного и широко известного метода оптимизации, могут быть ошибочными и неполными. Анонс второй части статьи: "Встречайте собственный авторский алгоритм имитации изотропного отжига (Simulated Isotropic Annealing, SIA)!"

Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Метод Нелдера-Мида, или метод симплексного поиска (Nelder–Mead method, NM)
Популяционные алгоритмы оптимизации: Метод Нелдера-Мида, или метод симплексного поиска (Nelder–Mead method, NM)

Статья представляет полное исследование метода Нелдера-Мида объясняя, как симплекс — пространство параметров функции — изменяется и перестраивается на каждой итерации для достижения оптимального решения, а также описывает способ улучшения этого метода.