Andrey Dik
Andrey Dik
4.4 (25)
  • Информация
12+ лет
опыт работы
4
продуктов
107
демо-версий
15
работ
0
сигналов
0
подписчиков
РАССМОТРЮ ПРЕДЛОЖЕНИЯ ПО ИЗДАНИЮ КНИГИ (УЧЕБНОГО ПОСОБИЯ) ОБ АЛГОРИТМАХ ОПТИМИЗАЦИИ.

Группа для общения по вопросам оптимизации и бесплатного тестирования продуктов: https://t.me/+vazsAAcney4zYmZi
Внимание! Появились мои двойники в телеграм, мой настоящий ник @JQS_aka_Joo

Мой github с алгоритмами оптимизации: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

Все мои публикации: https://www.mql5.com/en/users/joo/publications

Разрабатываю системы по технологиям машинного обучения с 2007 года и в области искусственного
интеллекта, оптимизации и прогнозирования.

Принимал активное участие в развитии платформы МТ5, таких как введение поддержки универсальных параллельных
вычислений на GPU и CPU с OpenCL, тестирование и бектестинг распределённых
вычислений в локальной сети и облаке при оптимизации в МТ5, мои тестовые функции входят в штатную поставку терминала.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
Мои продукты:
https://www.mql5.com/en/users/joo/seller

Рекомендуемые брокеры:
https://rbfxdirect.com/ru/lk/?a=dnhp
Andrey Dik
Опубликовал статью Алгоритм циклического партеногенеза — Cyclic Parthenogenesis Algorithm (CPA)
Алгоритм циклического партеногенеза — Cyclic Parthenogenesis Algorithm (CPA)

В данной статье рассмотрим новый популяционный алгоритм оптимизации CPA (Cyclic Parthenogenesis Algorithm), вдохновленный уникальной репродуктивной стратегией тлей. Алгоритм сочетает два механизма размножения — партеногенез и половое, а также использует колониальную структуру популяции с возможностью миграции между колониями. Ключевыми особенностями алгоритма являются адаптивное переключение между различными стратегиями размножения и система обмена информацией между колониями через механизм перелета.

Andrey Dik
Опубликовал статью Функции активации нейронов при обучении: ключ к быстрой сходимости?
Функции активации нейронов при обучении: ключ к быстрой сходимости?

В данной работе представлено исследование взаимодействия различных функций активации с алгоритмами оптимизации в контексте обучения нейронных сетей. Особое внимание уделяется сравнению классического ADAM и его популяционной версии при работе с широким спектром функций активации, включая осциллирующие функции ACON и Snake. Используя минималистичную архитектуру MLP (1-1-1) и единичный обучающий пример, производится изоляция влияния функций активации на процесс оптимизации от других факторов. Предложен подход к контролю весов сети через границы функций активации и механизма отражения весов, что позволяет избежать проблем с насыщением и застоем в обучении.

Andrey Dik
Опубликовал статью Алгоритм Большого взрыва и Большого сжатия — BBBC (Big Bang - Big Crunch)
Алгоритм Большого взрыва и Большого сжатия — BBBC (Big Bang - Big Crunch)

В статье представлен метод Big Bang - Big Crunch, который имеет две ключевые фазы: циклическое создание случайных точек и их сжатие к оптимальному решению. Этот подход сочетает исследование и уточнение, позволяя постепенно находить лучшие решения и открывая новые возможности в области оптимизации.

Andrey Dik
Andrey Dik
⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️
Andrey Dik
Andrey Dik
🎉 New Year’s Offer! 🎉

Dive into a world of new possibilities with our unique product, the MT5 Optimization Booster! For just two weeks, you have the chance to not only test all its features and benefits for free but also tackle your global optimization challenges!

✨ What awaits you?

🚀 Full access to the product's functionality
🎁 Unique opportunities that will help you achieve more
Don't miss the chance to make this New Year special! Click on the link https://www.mql5.com/en/blogs/post/760467 and start your free trial today!

Hurry up! This offer is valid for a limited time! 🎊
Andrey Dik
Andrey Dik
🎉 Новогоднее предложение! 🎉

Погрузитесь в мир новых возможностей с нашим уникальным продуктом MT5 Optimization Booster! Только в течение двух недель у вас есть шанс бесплатно протестировать все его функции и преимущества!

✨ Что вас ждет?
- 🚀 Полный доступ к функционалу продукта
- 🎁 Уникальные возможности, которые помогут вам достигать большего


Не упустите возможность сделать этот Новый год особенным! Переходите по ссылке https://www.mql5.com/ru/blogs/post/760459 и начните свое бесплатное тестирование уже сегодня!

Поторопитесь! Акция действует ограниченное время! 🎊
Andrey Dik
Special New Year Offer: 2 Weeks of Free Trial! ( file attached) ⬇️ Get full access to MT5 Optimization Booster for 14 days absolutely free What you get during the trial period: ✅ Complete unlimited functionality of the Booster ✅ Unlimited number of optimizations What is MT5 Optimization Booster...
Andrey Dik
Специальное новогоднее предложение: 2 недели бесплатного тестирования Получите полный доступ к MT5 Optimization Booster на 14 дней совершенно бесплатно (файл в прикрепе...
Andrey Dik
Опубликовал статью Алгоритм черной дыры — Black Hole Algorithm (BHA)
Алгоритм черной дыры — Black Hole Algorithm (BHA)

Алгоритм черной дыры (Black Hole Algorithm, BHA) использует принципы гравитации черных дыр для оптимизации решений. В статье мы рассмотрим, как BHA притягивает лучшие решения, избегая локальных экстремумов, и почему этот алгоритм стал мощным инструментом для решения сложных задач. Узнайте, как простые идеи могут привести к впечатляющим результатам в мире оптимизации.

Andrey Dik
Опубликовал статью Алгоритм Искусственного Племени (Artificial Tribe Algorithm, ATA)
Алгоритм Искусственного Племени (Artificial Tribe Algorithm, ATA)

В статье подробно рассматриваются ключевые компоненты и инновации алгоритма оптимизации ATA, представляющего собой эволюционный метод с уникальной двойной системой поведения, которая адаптируется в зависимости от ситуации. Используя скрещивание для углубленного исследования, и миграцию для поиска в случае застревания в локальных оптимумах, ATA сочетает в себе индивидуальное и социальное обучение.

Andrey Dik
Опубликовал статью Советник на базе универсального аппроксиматора MLP
Советник на базе универсального аппроксиматора MLP

В статье представлен простой и доступный способ использования нейронной сети в торговом советнике, который не требует глубоких знаний в машинном обучении. Метод исключает нормализацию целевой функции и устраняет проблемы "взрыва весов" и "ступора сети", предлагая интуитивное обучение и наглядный контроль результатов.

Andrey Dik
Опубликовал статью Популяционный ADAM (Adaptive Moment Estimation)
Популяционный ADAM (Adaptive Moment Estimation)

В статье представлено превращение известного и популярного градиентного метода оптимизации ADAM в популяционный алгоритм и его модификация с введением гибридных особей. Новый подход позволяет создавать агентов, комбинирующих элементы успешных решений с использованием вероятностного распределения. Ключевое нововведение — формирование гибридных популяционных особей, которые адаптивно аккумулируют информацию от наиболее перспективных решений, повышая эффективность поиска в сложных многомерных пространствах.

Andrey Dik
Опубликовал статью Алгоритм арифметической оптимизации (AOA): Путь от AOA к SOA (Simple Optimization Algorithm)
Алгоритм арифметической оптимизации (AOA): Путь от AOA к SOA (Simple Optimization Algorithm)

В данной статье мы представляем алгоритм арифметической оптимизации (Arithmetic Optimization Algorithm, AOA), который основывается на простых арифметических операциях: сложении, вычитании, умножении и делении. Эти базовые математические действия служат основой для поиска оптимальных решений в различных задачах.

Andrey Dik
Опубликовал статью Алгоритм атомарного орбитального поиска — Atomic Orbital Search (AOS): Модификация
Алгоритм атомарного орбитального поиска — Atomic Orbital Search (AOS): Модификация

Во второй части статьи мы продолжим разработку модифицированной версии алгоритма AOS (Atomic Orbital Search), сфокусировавшись на специфических операторах для повышения его эффективности и адаптивности. После анализа основ и механик алгоритма, мы обсудим идеи по улучшению производительности и возможности анализа сложных пространств решений, предлагая новые подходы для расширения его функциональности как инструмента для оптимизации.

Andrey Dik
Опубликовал статью Алгоритм атомарного орбитального поиска — Atomic Orbital Search (AOS)
Алгоритм атомарного орбитального поиска — Atomic Orbital Search (AOS)

В статье рассматривается алгоритм AOS (Atomic Orbital Search), который использует концепции атомной орбитальной модели для моделирования поиска решений. Алгоритм основывается на вероятностных распределениях и динамике взаимодействий в атоме. В статье подробно обсуждаются математические аспекты AOS, включая обновление положений кандидатов решений и механизмы поглощения и выброса энергии. AOS открывает новые горизонты для применения квантовых принципов в вычислительных задачах, предлагая инновационный подход к оптимизации.

Andrey Dik
Опубликовал статью Методы оптимизации библиотеки Alglib (Часть II)
Методы оптимизации библиотеки Alglib (Часть II)

В статье продолжим изучение оставшихся методов оптимизации из библиотеки ALGLIB, уделяя особое внимание их тестированию на сложных многомерных функциях. Это позволит нам не только оценить эффективность каждого из алгоритмов, но и выявить их сильные и слабые стороны в различных условиях.

Andrey Dik
Опубликовал статью Методы оптимизации библиотеки ALGLIB (Часть I)
Методы оптимизации библиотеки ALGLIB (Часть I)

В статье познакомимся с методами оптимизации библиотеки ALGLIB для MQL5. Статья включает простые и наглядные примеры применения ALGLIB для решения задач оптимизации, что сделает процесс освоения методов максимально доступным. Мы подробно рассмотрим подключение таких алгоритмов, как BLEIC, L-BFGS и NS, и на их основе решим простую тестовую задачу.

Andrey Dik
Опубликовал статью Алгоритм оптимизации на основе искусственной экосистемы — Artificial Ecosystem-based Optimization (AEO)
Алгоритм оптимизации на основе искусственной экосистемы —  Artificial Ecosystem-based Optimization (AEO)

В статье рассматривается метаэвристический алгоритм AEO, который моделирует взаимодействия между компонентами экосистемы, создавая начальную популяцию решений и применяя адаптивные стратегии обновления, и подробно описываются этапы работы AEO, включая фазы потребления и разложения, а также различные стратегии поведения агентов. Статья знакомит с особенностями и преимуществами данного алгоритма.

Andrey Dik
Опубликовал статью Оптимизация африканскими буйволами — African Buffalo Optimization (ABO)
Оптимизация африканскими буйволами — African Buffalo Optimization (ABO)

Статья посвящена алгоритму оптимизации африканскими буйволами (ABO), метаэвристическому подходу, разработанному в 2015 году на основе уникального поведения этих животных. В статье подробно описаны этапы реализации алгоритма и его эффективность в поиске решений сложных задач, что делает его ценным инструментом в области оптимизации.

Andrey Dik
Опубликовал статью Алгоритм искусственного орошения — Artificial Showering Algorithm (ASHA)
Алгоритм искусственного орошения — Artificial Showering Algorithm (ASHA)

В статье представлен Алгоритм Искусственного Орошения (ASHA) – новый метаэвристический метод, разработанный для решения общих задач оптимизации. Основанный на моделировании процессов потоков и накопления воды, этот алгоритм выстраивает концепцию идеального поля, в котором каждая единица ресурса (вода) вызывается для поиска оптимального решения. Узнайте, как ASHA адаптирует принципы потока и накопления для эффективного распределения ресурсов в условиях поискового пространства, а также познакомьтесь с его реализацией и итогами тестирования.