Andrey Dik
Andrey Dik
4.4 (26)
  • Информация
12+ лет
опыт работы
5
продуктов
87
демо-версий
15
работ
0
сигналов
0
подписчиков
РАССМОТРЮ ПРЕДЛОЖЕНИЯ ПО ИЗДАНИЮ КНИГИ (УЧЕБНОГО ПОСОБИЯ) ОБ АЛГОРИТМАХ ОПТИМИЗАЦИИ.

Группа для общения по вопросам оптимизации и бесплатного тестирования продуктов: https://t.me/+vazsAAcney4zYmZi
Внимание! Появились мои двойники в телеграм, мой настоящий ник @JQS_aka_Joo

Мой github с алгоритмами оптимизации: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

Все мои публикации: https://www.mql5.com/en/users/joo/publications

Разрабатываю системы по технологиям машинного обучения с 2007 года и в области искусственного
интеллекта, оптимизации и прогнозирования.

Принимал активное участие в развитии платформы МТ5, таких как введение поддержки универсальных параллельных
вычислений на GPU и CPU с OpenCL, тестирование и бектестинг распределённых
вычислений в локальной сети и облаке при оптимизации в МТ5, мои тестовые функции входят в штатную поставку терминала.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
Мои продукты:
https://www.mql5.com/en/users/joo/seller

Рекомендуемые брокеры:
https://rbfxdirect.com/ru/lk/?a=dnhp
Andrey Dik
Опубликовал статью Алгоритм анархической социальной оптимизации — Anarchic Society Optimization (ASO)
Алгоритм анархической социальной оптимизации — Anarchic Society Optimization (ASO)

В очередной статье мы познакомимся с алгоритмом Anarchic Society Optimization (ASO) и обсудим, как алгоритм, основанный на иррациональном и авантюрном поведении участников анархического общества - аномальной системы социального взаимодействия, свободной от централизованной власти и различного рода иерархий способен исследовать пространство решений и избегать ловушек локального оптимума. В статье будет представлена унифицированная структура ASO, применимая как к непрерывным, так и к дискретным задачам.

Andrey Dik
Опубликовал статью Алгоритм миграции животных — Animal Migration Optimization (AMO)
Алгоритм миграции животных — Animal Migration Optimization (AMO)

Статья посвящена алгоритму AMO, который моделирует процесс сезонной миграции животных в поисках оптимальных условий для жизни и размножения. Основные особенности AMO включают использование топологического соседства и вероятностный механизм обновления, что делает его простым в реализации и гибким для различных оптимизационных задач.

Andrey Dik
Опубликовал статью Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Тестирование и результаты
Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Тестирование и результаты

В этой статье мы продолжим изучение алгоритма искусственного пчелиного улья ABHA, углубляясь в написание кода и рассматривая оставшиеся методы. Напомним, что каждая пчела в модели представлена как индивидуальный агент, чье поведение зависит от внутренней и внешней информации, а также мотивационного состояния. Мы проведем тестирование алгоритма на различных функциях и подведем итоги, представив результаты в рейтинговой таблице.

Andrey Dik
Опубликовал статью Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Теория и методы
Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Теория и методы

В статье мы познакомимся с алгоритмом искусственного пчелиного улья (ABHA), разработанным в 2009 году. Алгоритм направлен на решение задач непрерывной оптимизации. Мы рассмотрим, как ABHA черпает вдохновение из поведения пчелиной колонии, где каждая пчела выполняет уникальную роль, что способствует более эффективному поиску ресурсов.

Andrey Dik
Опубликовал статью Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Двухфазная эволюция
Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Двухфазная эволюция

Эта статья является продолжением темы социального поведения живых организмов и его воздействия на разработку новой математической модели - ASBO (Adaptive Social Behavior Optimization). Мы погрузимся в двухфазную эволюцию, проведем тестирование алгоритма и сделаем выводы. Подобно тому, как в природе группа живых организмов объединяет свои усилия для выживания, ASBO использует принципы коллективного поведения для решения сложных задач оптимизации.

Andrey Dik
Опубликовал статью Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Метод Швефеля, Бокса-Мюллера
Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Метод Швефеля, Бокса-Мюллера

Эта статья представляет увлекательное погружение в мир социального поведения живых организмов и его влияние на создание новой математической модели — ASBO (Adaptive Social Behavior Optimization). Мы рассмотрим, как принципы лидерства, соседства и сотрудничества, наблюдаемые в обществах живых существ, вдохновляют разработку инновационных алгоритмов оптимизации.

Andrey Dik
Опубликовал статью Алгоритм искусственного электрического поля — Artificial Electric Field Algorithm (AEFA)
Алгоритм искусственного электрического поля — Artificial Electric Field Algorithm (AEFA)

Статья представляет алгоритм искусственного электрического поля (AEFA), вдохновленный законом Кулона об электростатической силе. Алгоритм моделирует электрические явления для решения сложных задач оптимизации, используя заряженные частицы и их взаимодействие. AEFA демонстрирует уникальные свойства в контексте других алгоритмов, связанных с законами природы.

Andrey Dik
Опубликовал статью Алгоритм поиска в окрестности — Across Neighbourhood Search (ANS)
Алгоритм поиска в окрестности — Across Neighbourhood Search (ANS)

Статья раскрывает потенциал алгоритма ANS, как важного шага в развитии гибких и интеллектуальных методов оптимизации, способных учитывать специфику задачи и динамику окружающей среды в пространстве поиска.

Andrey Dik
Опубликовал статью Алгорим оптимизации химическими реакциями — Chemical reaction optimisation, CRO (Часть II): Сборка и результаты
Алгорим оптимизации химическими реакциями — Chemical reaction optimisation, CRO (Часть II): Сборка и результаты

Во второй части статьи мы соберем химические операторы в единый алгоритм и представим подробный анализ результатов его работы. Узнаем, как метод оптимизации химическими реакциями (CRO) справился с вызовом в решении сложных задач на тестовых функциях.

Andrey Dik
Опубликовал статью Алгорим оптимизации химическими реакциями — Chemical reaction optimisation, CRO (Часть I): Химия процессов в оптимизации
Алгорим оптимизации химическими реакциями — Chemical reaction optimisation, CRO (Часть I): Химия процессов в оптимизации

В первой части данной статьи мы окунемся в мир химических реакций и откроем новый подход к оптимизации! Метод оптимизации химическими реакциями (CRO) использует для достижения эффективных результатов принципы, определяемые законами термодинамики. Мы раскроем секреты декомпозиции, синтеза и других химических процессов, которые стали основой этого инновационного метода.

Andrey Dik
Опубликовал статью Наиболее известные модификации алгоритма искусственного кооперативного поиска (Artificial Cooperative Search, ACSm)
Наиболее известные модификации алгоритма искусственного кооперативного поиска (Artificial Cooperative Search, ACSm)

В данной статье рассмотрим эволюцию алгоритма ACS: три модификации в направлении улучшения характеристик сходимости и результативности алгоритма. Трансформация одного из ведущих алгоритмов оптимизации. От модификаций матриц до революционных подходов к формированию популяций.

Andrey Dik
Опубликовал статью Алгоритм искусственного кооперативного поиска (Artificial Cooperative Search, ACS)
Алгоритм искусственного кооперативного поиска (Artificial Cooperative Search, ACS)

Представляем вам алгоритм Artificial Cooperative Search (ACS). Этот инновационный метод использует бинарную матрицу и несколько динамичных популяций, основанных на мутуалистических отношениях и кооперации, для быстрого и точного нахождения оптимальных решений. Уникальный подход ACS к "хищникам" и "жертвам" позволяет добиваться отличных результатов в задачах численной оптимизации.

Andrey Dik
Опубликовал статью Алгоритм кодового замка (Сode Lock Algorithm, CLA)
Алгоритм кодового замка (Сode Lock Algorithm, CLA)

В этой статье мы переосмыслим кодовые замки, превращая их из механизмов защиты в инструменты для решения сложных задач оптимизации. Откройте для себя мир кодовых замков, не как простых устройств безопасности, но как вдохновения для нового подхода к оптимизации. Мы создадим целую популяцию "замков", где каждый замок представляет собой уникальное решение задачи. Затем мы разработаем алгоритм, который будет "вскрывать" эти замки и находить оптимальные решения в самых разных областях, от машинного обучения до разработки торговых систем.

Andrey Dik
Опубликовал статью Алгоритм кометного следа (Comet Tail Algorithm, CTA)
Алгоритм кометного следа (Comet Tail Algorithm, CTA)

В данной статье мы рассмотрим новый авторский алгоритм оптимизации CTA (Comet Tail Algorithm), который черпает вдохновение из уникальных космических объектов - комет и их впечатляющих хвостов, формирующихся при приближении к Солнцу. Данный алгоритм основан на концепции движения комет и их хвостов, и предназначен для поиска оптимальных решений в задачах оптимизации.

Andrey Dik
Опубликовал статью Алгоритм эволюции панциря черепахи (Turtle Shell Evolution Algorithm, TSEA)
Алгоритм эволюции панциря черепахи (Turtle Shell Evolution Algorithm, TSEA)

Уникальный алгоритм оптимизации, вдохновленный эволюцией панциря черепахи. Алгоритм TSEA эмулирует постепенное формирование ороговевших участков кожи, которые представляют собой оптимальные решения задачи. Лучшие решения становятся более "твердыми" и располагаются ближе к внешней поверхности, в то время как менее удачные решения остаются "мягкими" и находятся внутри. Алгоритм использует кластеризацию решений по качеству и расстоянию, позволяя сохранять менее успешные варианты и обеспечивая гибкость и адаптивность.

Andrey Dik
Опубликовал статью Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть II): Многомодальность
Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть II): Многомодальность

Во второй части статьи перейдем к практической реализации алгоритма BSO, проведем тесты на тестовых функциях и сравним эффективность BSO с другими методами оптимизации.

Andrey Dik
Опубликовал статью Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть I): Кластеризация
Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть I): Кластеризация

В данной статье мы рассмотрим инновационный метод оптимизации, названный BSO (Brain Storm Optimization), который вдохновлен природным явлением - "мозговым штурмом". Мы также обсудим новый подход к решению многомодальных задач оптимизации, который использует метод BSO и позволяет находить несколько оптимальных решений без необходимости заранее определять количество подпопуляций. В статье мы также рассмотрим методы кластеризации K-Means и K-Means++.

Andrey Dik
Andrey Dik
My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5
Мой github с алгоритмами оптимизации: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5
Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Алгоритм боидов, или алгоритм стайного поведения (Boids Algorithm, Boids)
Популяционные алгоритмы оптимизации: Алгоритм боидов, или алгоритм стайного поведения (Boids Algorithm, Boids)

В данной статье мы проводим исследование алгоритма Boids, в основе которого лежат уникальные примеры стайного поведения животных. Алгоритм Boids, в свою очередь, послужил основой для создания целого класса алгоритмов, объединенных под названием "Роевый интеллект".

Andrey Dik
Опубликовал статью Популяционные алгоритмы оптимизации: Алгоритм птичьего роя (Bird Swarm Algorithm, BSA)
Популяционные алгоритмы оптимизации: Алгоритм птичьего роя (Bird Swarm Algorithm, BSA)

В статье исследуется алгоритм BSA, основанный на поведении птиц, который вдохновлен коллективным стайным взаимодействием птиц в природе. Различные стратегии поиска индивидов в BSA, включая переключение между поведением в полете, бдительностью и поиском пищи, делают этот алгоритм многоаспектным. Он использует принципы стайного поведения, коммуникации, адаптивности, лидерства и следования птиц для эффективного поиска оптимальных решений.