Andrey Dik
Andrey Dik
4.4 (25)
  • Informações
12+ anos
experiência
4
produtos
107
versão demo
15
trabalhos
0
sinais
0
assinantes
I WILL CONSIDER PROPOSALS FOR THE PUBLICATION OF A BOOK (TEXTBOOK) ON OPTIMIZATION ALGORITHMS.

A group for communication on optimization and free product testing://t.me/+vazsAAcney4zYmZi
Attention! My Telegram doppelgangers have appeared, my real nickname is @JQS_aka_Joo

My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

All my publications: https://www.mql5.com/en/users/joo/publications

I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.

I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller

Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
Andrey Dik
Andrey Dik
Группа для общения по вопросам оптимизации: https://t.me/+vazsAAcney4zYmZi
Andrey Dik
Publicado o artigo Optimização por nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Prática
Optimização por nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Prática

Neste artigo, continuaremos a explorar a implementação do algoritmo ACMO (Atmospheric Cloud Model Optimization). Em particular, discutiremos dois aspectos-chave: o movimento das nuvens para regiões de baixa pressão e a modelagem do processo de chuva, incluindo a inicialização das gotas e sua distribuição entre as nuvens. Analisaremos também outros métodos importantes para a gestão do estado das nuvens e para garantir sua interação com o ambiente.

Andrey Dik
Publicado o artigo Otimização de nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoria
Otimização de nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoria

Este artigo é dedicado ao algoritmo meta-heurístico Atmosphere Clouds Model Optimization (ACMO), que modela o comportamento das nuvens para resolver problemas de otimização. O algoritmo utiliza os princípios de geração, movimento e dispersão de nuvens, adaptando-se às "condições climáticas" no espaço de soluções. O artigo explora como a simulação meteorológica do algoritmo encontra soluções ótimas em um espaço complexo de possibilidades e descreve detalhadamente as etapas do ACMO, incluindo a preparação do "céu", o nascimento das nuvens, seu deslocamento e a concentração de chuva.

Andrey Dik
MT5 Optimization Booster Trading News The results of MLP neural network optimization in the standard MT5 optimizer using MT5 Optimization Booster . The booster perfectly identifies promising areas of search and focuses its attention on these areas...
Andrey Dik
Andrey Dik
An example of training a neural network using the MT5 Optimization Booster product. The nature of the balance curve on the OOS corresponds to the nature of the curve in the training area.
Andrey Dik
Publicado o artigo Algoritmo de arquearia — Archery Algorithm (AA)
Algoritmo de arquearia — Archery Algorithm (AA)

Neste artigo, examinamos detalhadamente o algoritmo de otimização inspirado na arquearia, com foco no uso do método de roleta como mecanismo de seleção de áreas promissoras para a colocação das "flechas". Esse método permite avaliar a qualidade das soluções e selecionar as posições mais promissoras para um estudo mais aprofundado.

Andrey Dik
MT5 Optimization Booster Product Guide The product is designed to enhance the functionality of the standard tester...
Andrey Dik
Publicado o artigo Otimização por Quimiotaxia Bacteriana (BCO)
Otimização por Quimiotaxia Bacteriana (BCO)

Este artigo apresenta a versão original do algoritmo de otimização por quimiotaxia bacteriana (Bacterial Chemotaxis Optimization, BCO) e sua variante modificada. Examinaremos detalhadamente todas as diferenças, com foco especial na nova versão BCOm, que simplifica o mecanismo de movimento das bactérias, reduz a dependência do histórico de mudanças de posição e emprega operações matemáticas mais simples em comparação com a versão original, que possui um alto custo computacional. Além disso, serão realizados testes e apresentadas conclusões.

Andrey Dik
Dear traders and investors! We present to you the MT5 Optimization Booster – an innovative product that will revolutionize your optimization experience on MetaTrader 5! The MT5 Optimization Booster is designed to enhance the capabilities of the standard optimizer...
Andrey Dik
Уважаемые трейдеры и инвесторы! Представляем вам MT5 Optimization Booster – инновационный продукт, который перевернет ваши представления об оптимизации на MetaTrader 5! MT5 Optimization Booster предназначен для расширения возможностей штатного оптимизатора...
Andrey Dik
Publicado o artigo Busca com restrições — Tabu Search (TS)
Busca com restrições — Tabu Search (TS)

O artigo analisa o algoritmo de busca tabu, um dos primeiros e mais conhecidos métodos meta-heurísticos. Exploraremos detalhadamente como o algoritmo funciona, desde a escolha da solução inicial até a exploração das soluções vizinhas, com foco no uso da lista tabu. O artigo cobre os aspectos-chave do algoritmo e suas particularidades.

Andrey Dik
Publicado o artigo Algoritmo de algas artificiais (AAA)
Algoritmo de algas artificiais (AAA)

Este artigo aborda o algoritmo de algas artificiais (AAA), desenvolvido com base nos processos biológicos característicos das microalgas. Ele incorpora movimento espiral, processo evolutivo e adaptação, e possibilita a resolução de problemas de otimização. O artigo oferece uma análise detalhada dos princípios de funcionamento do AAA e seu potencial na modelagem matemática, destacando a conexão entre a natureza e as soluções algorítmicas.

Andrey Dik
Publicado o artigo Algoritmo de otimização da sociedade anárquica — Anarchic society optimization (ASO)
Algoritmo de otimização da sociedade anárquica — Anarchic society optimization (ASO)

No próximo artigo, conheceremos o algoritmo Anarchic Society Optimization (ASO) e discutiremos como um algoritmo baseado no comportamento irracional e aventureiro dos participantes de uma sociedade anárquica — um sistema anômalo de interação social, livre de autoridade centralizada e de qualquer tipo de hierarquia — é capaz de explorar o espaço de soluções e evitar armadilhas de ótimos locais. O artigo apresentará uma estrutura unificada do ASO, aplicável tanto a problemas contínuos quanto a problemas discretos.

Andrey Dik
Publicado o artigo Algoritmo de otimização de migração animal (AMO)
Algoritmo de otimização de migração animal (AMO)

O artigo é dedicado ao algoritmo AMO, que modela o processo de migração sazonal dos animais em busca de condições ideais para sobrevivência e reprodução. As principais características do AMO incluem o uso da vizinhança topológica e um mecanismo probabilístico de atualização, tornando-o simples de implementar e flexível para diversas tarefas de otimização.

Andrey Dik
Publicado o artigo Colmeia artificial de abelhas (ABHA): Testes e resultados
Colmeia artificial de abelhas (ABHA): Testes e resultados

Neste artigo, continuaremos o estudo do algoritmo de colmeia de abelhas ABHA, aprofundando-nos na escrita de código e analisando os métodos restantes. Lembremos que cada abelha no modelo é apresentada como um agente individual, cujo comportamento depende de informações internas e externas, bem como de seu estado motivacional. Realizaremos testes do algoritmo em diferentes funções e apresentaremos os resultados em uma tabela de classificação.

Andrey Dik
Publicado o artigo Colmeia artificial de abelhas — Artificial Bee Hive Algorithm (ABHA): Teoria e métodos
Colmeia artificial de abelhas — Artificial Bee Hive Algorithm (ABHA): Teoria e métodos

Neste artigo, exploramos o algoritmo Artificial Bee Hive Algorithm (ABHA), desenvolvido em 2009. Voltado para a solução de problemas de otimização contínua, o algoritmo é utilizado para encontrar o melhor caminho entre dois pontos. Analisaremos como o ABHA se inspira no comportamento das colônias de abelhas, no qual cada abelha desempenha um papel único que contribui para uma busca mais eficiente por recursos.

Andrey Dik
Publicado o artigo Algoritmo de comportamento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Evolução em duas fases
Algoritmo de comportamento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Evolução em duas fases

Este artigo dá continuidade ao tema do comportamento social dos organismos vivos e ao seu impacto no desenvolvimento de um novo modelo matemático, o ASBO (Adaptive Social Behavior Optimization). Exploraremos a evolução em duas fases, realizaremos testes no algoritmo e apresentaremos as conclusões. Assim como na natureza, onde grupos de organismos vivos se unem para sobreviver, o ASBO utiliza princípios de comportamento coletivo para resolver problemas complexos de otimização.

Andrey Dik
Publicado o artigo Algoritmo de comportamento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Método de Schwefel, Box-Muller
Algoritmo de comportamento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Método de Schwefel, Box-Muller

Este artigo apresenta uma imersão fascinante no mundo do comportamento social de organismos vivos e sua influência na criação de um novo modelo matemático — ASBO (Adaptive Social Behavior Optimization). Exploramos como os princípios de liderança, vizinhança e cooperação, observados em sociedades de seres vivos, inspiram o desenvolvimento de algoritmos de otimização inovadores.

Andrey Dik
Publicado o artigo Algoritmo do Campo Elétrico Artificial — Artificial Electric Field Algorithm (AEFA)
Algoritmo do Campo Elétrico Artificial — Artificial Electric Field Algorithm (AEFA)

Este artigo apresenta o Algoritmo do Campo Elétrico Artificial (AEFA), inspirado na lei de Coulomb da força eletrostática. Por meio de partículas carregadas e suas interações, o algoritmo simula fenômenos elétricos para resolver tarefas complexas de otimização. O AEFA demonstra propriedades únicas em relação a outros algoritmos baseados em leis da natureza.

Andrey Dik
Publicado o artigo Algoritmo de busca através de vizinhança — Across Neighborhood Search (ANS)
Algoritmo de busca através de vizinhança — Across Neighborhood Search (ANS)

O artigo explora o potencial do algoritmo ANS, como um passo relevante no desenvolvimento de métodos de otimização flexíveis e inteligentes, capazes de considerar as especificidades da tarefa e a dinâmica do ambiente no espaço de busca.