Andrey Dik
Andrey Dik
4.4 (26)
  • Informações
12+ anos
experiência
5
produtos
87
versão demo
15
trabalhos
0
sinais
0
assinantes
I WILL CONSIDER PROPOSALS FOR THE PUBLICATION OF A BOOK (TEXTBOOK) ON OPTIMIZATION ALGORITHMS.

A group for communication on optimization and free product testing://t.me/+vazsAAcney4zYmZi
Attention! My Telegram doppelgangers have appeared, my real nickname is @JQS_aka_Joo

My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

All my publications: https://www.mql5.com/en/users/joo/publications

I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.

I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller

Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
Andrey Dik
Publicado o artigo Algoritmo do Restaurateur de Sucesso — Successful Restaurateur Algorithm (SRA)
Algoritmo do Restaurateur de Sucesso — Successful Restaurateur Algorithm (SRA)

O Algoritmo do Restaurateur de Sucesso (SRA) é um método inovador de otimização inspirado nos princípios de gestão de um restaurante. Ao contrário das abordagens tradicionais, o SRA não descarta as soluções mais fracas, mas as melhora, combinando-as com elementos das soluções de maior sucesso. O algoritmo apresenta resultados competitivos e traz uma nova perspectiva sobre como equilibrar a diversificação e a intensificação em problemas de otimização.

Andrey Dik
Publicado o artigo Algoritmo de Otimização de Bilhar — Billiards Optimization Algorithm (BOA)
Algoritmo de Otimização de Bilhar — Billiards Optimization Algorithm (BOA)

Inspirado no jogo clássico de bilhar, o método BOA modela o processo de busca por soluções ótimas como uma partida em que as bolas tentam cair nas caçapas, que simbolizam os melhores resultados. Neste artigo, analisaremos os fundamentos do funcionamento do BOA, seu modelo matemático e sua eficácia na resolução de diferentes problemas de otimização.

Andrey Dik
Publicado o artigo Otimização com Jogo do Caos — Chaos Game Optimization (CGO)
Otimização com Jogo do Caos — Chaos Game Optimization (CGO)

Apresentamos o novo algoritmo meta-heurístico Chaos Game Optimization (CGO), que demonstra capacidade única de manter alta eficiência em tarefas de grande dimensionalidade. Ao contrário da maioria dos algoritmos de otimização, o CGO não apenas não perde desempenho, como também às vezes melhora sua performance quando a complexidade do problema aumenta, o que constitui sua principal característica.

Andrey Dik
Publicado o artigo Otimização por herança sanguínea — Blood Inheritance Optimization (BIO)
Otimização por herança sanguínea — Blood Inheritance Optimization (BIO)

Apresento a vocês meu novo algoritmo populacional de otimização BIO (Blood Inheritance Optimization), inspirado no sistema de herança dos tipos sanguíneos humanos. Neste algoritmo, cada solução possui seu próprio "tipo sanguíneo", que define a forma de sua evolução. Assim como na natureza, o tipo sanguíneo de uma criança é herdado segundo regras específicas, no BIO as novas soluções recebem suas características através de um sistema de herança e mutações.

Andrey Dik
Publicado o artigo Algoritmo de busca circular — Circle Search Algorithm (CSA)
Algoritmo de busca circular — Circle Search Algorithm (CSA)

Este artigo apresenta um novo algoritmo metaheurístico de otimização, o CSA (Circle Search Algorithm), baseado nas propriedades geométricas do círculo. O algoritmo utiliza o princípio de movimentação de pontos ao longo das tangentes para encontrar a solução ideal, combinando fases de diversificação global e intensificação local.

Andrey Dik
Publicado o artigo Algoritmo de otimização Royal Flush — Royal Flush Optimization (RFO)
Algoritmo de otimização Royal Flush — Royal Flush Optimization (RFO)

O algoritmo Royal Flush Optimization, criado pelo autor, propõe uma nova forma de abordar problemas de otimização, substituindo a codificação binária clássica dos algoritmos genéticos por uma abordagem setorial, inspirada nos princípios do pôquer. O RFO demonstra como a simplificação de princípios fundamentais pode levar à criação de um método de otimização eficaz e prático. O artigo apresenta uma análise detalhada do algoritmo e os resultados dos testes realizados.

Andrey Dik
Publicado o artigo Busca dialética — Dialectic Search (DA)
Busca dialética — Dialectic Search (DA)

Apresentamos o Algoritmo Dialético (DA), um novo método de otimização global inspirado no conceito filosófico de dialética. O algoritmo utiliza uma divisão única da população em pensadores especulativos e práticos. Os testes mostram um desempenho impressionante de até 98% em tarefas de baixa dimensionalidade e uma eficácia geral de 57,95%. Este artigo explica esses números e apresenta uma descrição detalhada do algoritmo e os resultados dos experimentos em diferentes tipos de funções.

Andrey Dik
Publicado o artigo Algoritmo da viagem evolutiva no tempo — Time Evolution Travel Algorithm (TETA)
Algoritmo da viagem evolutiva no tempo — Time Evolution Travel Algorithm (TETA)

Meu algoritmo original. Neste artigo é apresentado o Algoritmo da Viagem Evolutiva no Tempo (TETA), inspirado no conceito de universos paralelos e fluxos temporais. A ideia central do algoritmo é que, embora a viagem no tempo no sentido convencional seja impossível, podemos escolher uma sequência de eventos que leva a diferentes realidades.

Andrey Dik
Publicado o artigo Algoritmo de Partenogênese Cíclica — Cyclic Parthenogenesis Algorithm (CPA)
Algoritmo de Partenogênese Cíclica — Cyclic Parthenogenesis Algorithm (CPA)

Neste artigo, vamos analisar um novo algoritmo populacional de otimização, o CPA (Cyclic Parthenogenesis Algorithm), inspirado na estratégia reprodutiva única dos pulgões. O algoritmo combina dois mecanismos de reprodução — partenogênese e sexual — e utiliza uma estrutura de colônia populacional com possibilidade de migração entre colônias. As principais características do algoritmo são a alternância adaptativa entre diferentes estratégias reprodutivas e o sistema de troca de informação entre colônias por meio do mecanismo de voo.

Andrey Dik
Publicado o artigo Funções de ativação de neurônios durante o aprendizado: chave para uma convergência rápida?
Funções de ativação de neurônios durante o aprendizado: chave para uma convergência rápida?

Este trabalho apresenta uma análise da interação entre diferentes funções de ativação e algoritmos de otimização no contexto do treinamento de redes neurais. A atenção principal está voltada para a comparação entre o ADAM clássico e sua versão populacional ao lidar com uma ampla gama de funções de ativação, incluindo as funções oscilatórias ACON e Snake. Mediante uma arquitetura MLP minimalista (1-1-1) e um único exemplo de treino, isola-se a influência das funções de ativação no processo de otimização, eliminando interferências de outros fatores. Propomos um método de controle dos pesos da rede por meio dos limites das funções de ativação e um mecanismo de reflexão de pesos, permitindo evitar problemas de saturação e estagnação no aprendizado.

Andrey Dik
Publicado o artigo Algoritmo do Big Bang e do Grande Colapso — BBBC (Big Bang - Big Crunch)
Algoritmo do Big Bang e do Grande Colapso — BBBC (Big Bang - Big Crunch)

Este artigo apresenta o método Big Bang - Big Crunch, que possui duas fases principais: a criação cíclica de pontos aleatórios e sua compressão em direção à solução ótima. Essa abordagem combina diversificação e intensificação, permitindo encontrar gradualmente soluções melhores e abrindo novas possibilidades na área de otimização.

Andrey Dik
Andrey Dik
⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️
Andrey Dik
Andrey Dik
🎉 New Year’s Offer! 🎉

Dive into a world of new possibilities with our unique product, the MT5 Optimization Booster! For just two weeks, you have the chance to not only test all its features and benefits for free but also tackle your global optimization challenges!

✨ What awaits you?

🚀 Full access to the product's functionality
🎁 Unique opportunities that will help you achieve more
Don't miss the chance to make this New Year special! Click on the link https://www.mql5.com/en/blogs/post/760467 and start your free trial today!

Hurry up! This offer is valid for a limited time! 🎊
Andrey Dik
Andrey Dik
🎉 Новогоднее предложение! 🎉

Погрузитесь в мир новых возможностей с нашим уникальным продуктом MT5 Optimization Booster! Только в течение двух недель у вас есть шанс бесплатно протестировать все его функции и преимущества!

✨ Что вас ждет?
- 🚀 Полный доступ к функционалу продукта
- 🎁 Уникальные возможности, которые помогут вам достигать большего


Не упустите возможность сделать этот Новый год особенным! Переходите по ссылке https://www.mql5.com/ru/blogs/post/760459 и начните свое бесплатное тестирование уже сегодня!

Поторопитесь! Акция действует ограниченное время! 🎊
Andrey Dik
Special New Year Offer: 2 Weeks of Free Trial! ( file attached) ⬇️ Get full access to MT5 Optimization Booster for 14 days absolutely free What you get during the trial period: ✅ Complete unlimited functionality of the Booster ✅ Unlimited number of optimizations What is MT5 Optimization Booster...
Andrey Dik
Специальное новогоднее предложение: 2 недели бесплатного тестирования Получите полный доступ к MT5 Optimization Booster на 14 дней совершенно бесплатно (файл в прикрепе...
Andrey Dik
Publicado o artigo Algoritmo do buraco negro — Black Hole Algorithm (BHA)
Algoritmo do buraco negro — Black Hole Algorithm (BHA)

O algoritmo do buraco negro (Black Hole Algorithm, BHA) utiliza os princípios da gravidade dos buracos negros para otimizar soluções. Neste artigo, vamos explorar como o BHA atrai as melhores soluções, evitando mínimos locais, e por que esse algoritmo se tornou uma ferramenta poderosa para resolver problemas complexos. Descubra como ideias simples podem gerar resultados impressionantes no mundo da otimização.

Andrey Dik
Publicado o artigo Algoritmo de tribo artificial (Artificial Tribe Algorithm, ATA)
Algoritmo de tribo artificial (Artificial Tribe Algorithm, ATA)

O artigo analisa em detalhes os componentes-chave e as inovações do algoritmo de otimização ATA, que é um método evolutivo com um sistema de comportamento duplo único, que se adapta conforme a situação. Utilizando cruzamento para uma diversificação aprofundada, e migração para busca quando há estagnação em ótimos locais, o ATA combina aprendizado individual e social.

Andrey Dik
Publicado o artigo EA baseado em um aproximador universal MLP
EA baseado em um aproximador universal MLP

Este artigo apresenta uma forma simples e acessível de usar uma rede neural em um EA, que não exige conhecimento aprofundado em aprendizado de máquina. O método elimina a necessidade de normalizar a função alvo e evita problemas como “explosão de pesos” e “paralisação da rede”, oferecendo um aprendizado intuitivo com controle visual dos resultados.

Andrey Dik
Publicado o artigo ADAM Populacional (estimativa adaptativa de momentos)
ADAM Populacional (estimativa adaptativa de momentos)

Este artigo apresenta a transformação do conhecido e popular método de otimização por gradiente ADAM em um algoritmo populacional e sua modificação com a introdução de indivíduos híbridos. A nova abordagem permite criar agentes que combinam elementos de soluções bem-sucedidas usando uma distribuição probabilística. A principal inovação é a formação de indivíduos híbridos populacionais, que acumulam de forma adaptativa informações das soluções mais promissoras, aumentando a eficácia da busca em espaços multidimensionais complexos.