Andrey Dik / Perfil
- Informações
12+ anos
experiência
|
4
produtos
|
107
versão demo
|
15
trabalhos
|
0
sinais
|
0
assinantes
|
A group for communication on optimization and free product testing://t.me/+vazsAAcney4zYmZi
Attention! My Telegram doppelgangers have appeared, my real nickname is @JQS_aka_Joo
My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5
All my publications: https://www.mql5.com/en/users/joo/publications
I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.
I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller
Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp


Neste artigo, continuaremos a explorar a implementação do algoritmo ACMO (Atmospheric Cloud Model Optimization). Em particular, discutiremos dois aspectos-chave: o movimento das nuvens para regiões de baixa pressão e a modelagem do processo de chuva, incluindo a inicialização das gotas e sua distribuição entre as nuvens. Analisaremos também outros métodos importantes para a gestão do estado das nuvens e para garantir sua interação com o ambiente.

Este artigo é dedicado ao algoritmo meta-heurístico Atmosphere Clouds Model Optimization (ACMO), que modela o comportamento das nuvens para resolver problemas de otimização. O algoritmo utiliza os princípios de geração, movimento e dispersão de nuvens, adaptando-se às "condições climáticas" no espaço de soluções. O artigo explora como a simulação meteorológica do algoritmo encontra soluções ótimas em um espaço complexo de possibilidades e descreve detalhadamente as etapas do ACMO, incluindo a preparação do "céu", o nascimento das nuvens, seu deslocamento e a concentração de chuva.




Neste artigo, examinamos detalhadamente o algoritmo de otimização inspirado na arquearia, com foco no uso do método de roleta como mecanismo de seleção de áreas promissoras para a colocação das "flechas". Esse método permite avaliar a qualidade das soluções e selecionar as posições mais promissoras para um estudo mais aprofundado.


Este artigo apresenta a versão original do algoritmo de otimização por quimiotaxia bacteriana (Bacterial Chemotaxis Optimization, BCO) e sua variante modificada. Examinaremos detalhadamente todas as diferenças, com foco especial na nova versão BCOm, que simplifica o mecanismo de movimento das bactérias, reduz a dependência do histórico de mudanças de posição e emprega operações matemáticas mais simples em comparação com a versão original, que possui um alto custo computacional. Além disso, serão realizados testes e apresentadas conclusões.



O artigo analisa o algoritmo de busca tabu, um dos primeiros e mais conhecidos métodos meta-heurísticos. Exploraremos detalhadamente como o algoritmo funciona, desde a escolha da solução inicial até a exploração das soluções vizinhas, com foco no uso da lista tabu. O artigo cobre os aspectos-chave do algoritmo e suas particularidades.

Este artigo aborda o algoritmo de algas artificiais (AAA), desenvolvido com base nos processos biológicos característicos das microalgas. Ele incorpora movimento espiral, processo evolutivo e adaptação, e possibilita a resolução de problemas de otimização. O artigo oferece uma análise detalhada dos princípios de funcionamento do AAA e seu potencial na modelagem matemática, destacando a conexão entre a natureza e as soluções algorítmicas.

No próximo artigo, conheceremos o algoritmo Anarchic Society Optimization (ASO) e discutiremos como um algoritmo baseado no comportamento irracional e aventureiro dos participantes de uma sociedade anárquica — um sistema anômalo de interação social, livre de autoridade centralizada e de qualquer tipo de hierarquia — é capaz de explorar o espaço de soluções e evitar armadilhas de ótimos locais. O artigo apresentará uma estrutura unificada do ASO, aplicável tanto a problemas contínuos quanto a problemas discretos.

O artigo é dedicado ao algoritmo AMO, que modela o processo de migração sazonal dos animais em busca de condições ideais para sobrevivência e reprodução. As principais características do AMO incluem o uso da vizinhança topológica e um mecanismo probabilístico de atualização, tornando-o simples de implementar e flexível para diversas tarefas de otimização.

Neste artigo, continuaremos o estudo do algoritmo de colmeia de abelhas ABHA, aprofundando-nos na escrita de código e analisando os métodos restantes. Lembremos que cada abelha no modelo é apresentada como um agente individual, cujo comportamento depende de informações internas e externas, bem como de seu estado motivacional. Realizaremos testes do algoritmo em diferentes funções e apresentaremos os resultados em uma tabela de classificação.

Neste artigo, exploramos o algoritmo Artificial Bee Hive Algorithm (ABHA), desenvolvido em 2009. Voltado para a solução de problemas de otimização contínua, o algoritmo é utilizado para encontrar o melhor caminho entre dois pontos. Analisaremos como o ABHA se inspira no comportamento das colônias de abelhas, no qual cada abelha desempenha um papel único que contribui para uma busca mais eficiente por recursos.

Este artigo dá continuidade ao tema do comportamento social dos organismos vivos e ao seu impacto no desenvolvimento de um novo modelo matemático, o ASBO (Adaptive Social Behavior Optimization). Exploraremos a evolução em duas fases, realizaremos testes no algoritmo e apresentaremos as conclusões. Assim como na natureza, onde grupos de organismos vivos se unem para sobreviver, o ASBO utiliza princípios de comportamento coletivo para resolver problemas complexos de otimização.

Este artigo apresenta uma imersão fascinante no mundo do comportamento social de organismos vivos e sua influência na criação de um novo modelo matemático — ASBO (Adaptive Social Behavior Optimization). Exploramos como os princípios de liderança, vizinhança e cooperação, observados em sociedades de seres vivos, inspiram o desenvolvimento de algoritmos de otimização inovadores.

Este artigo apresenta o Algoritmo do Campo Elétrico Artificial (AEFA), inspirado na lei de Coulomb da força eletrostática. Por meio de partículas carregadas e suas interações, o algoritmo simula fenômenos elétricos para resolver tarefas complexas de otimização. O AEFA demonstra propriedades únicas em relação a outros algoritmos baseados em leis da natureza.

O artigo explora o potencial do algoritmo ANS, como um passo relevante no desenvolvimento de métodos de otimização flexíveis e inteligentes, capazes de considerar as especificidades da tarefa e a dinâmica do ambiente no espaço de busca.