Andrey Dik
Andrey Dik
4.4 (26)
  • Informações
12+ anos
experiência
5
produtos
87
versão demo
15
trabalhos
0
sinais
0
assinantes
I WILL CONSIDER PROPOSALS FOR THE PUBLICATION OF A BOOK (TEXTBOOK) ON OPTIMIZATION ALGORITHMS.

A group for communication on optimization and free product testing://t.me/+vazsAAcney4zYmZi
Attention! My Telegram doppelgangers have appeared, my real nickname is @JQS_aka_Joo

My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

All my publications: https://www.mql5.com/en/users/joo/publications

I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.

I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller

Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
Andrey Dik
Publicado o artigo Importância da qualidade do gerador de números aleatórios no desempenho dos algoritmos de otimização
Importância da qualidade do gerador de números aleatórios no desempenho dos algoritmos de otimização

Neste artigo, analisaremos o gerador de números aleatórios Mersenne Twister e o compararemos com o gerador padrão do MQL5. Veremos como a qualidade dos geradores de números aleatórios influencia os resultados dos algoritmos de otimização.

Andrey Dik
Publicado o artigo Algoritmos de otimização populacionais: algoritmo de baleias (Whale Optimization Algorithm, WOA)
Algoritmos de otimização populacionais: algoritmo de baleias (Whale Optimization Algorithm, WOA)

O algoritmo de otimização de baleias (WOA) é um algoritmo metaheurístico inspirado pelo comportamento e pelas estratégias de caça das baleias-jubarte. A ideia principal do WOA é imitar o chamado método de alimentação "rede de bolhas", em que as baleias criam bolhas ao redor de suas presas para depois atacá-las em um movimento espiral.

Andrey Dik
Publicado o artigo Hibridização de algoritmos populacionais. Estruturas sequenciais e paralelas
Hibridização de algoritmos populacionais. Estruturas sequenciais e paralelas

Aqui, vamos mergulhar no mundo da hibridização de algoritmos de otimização, analisando três tipos principais: mistura de estratégias, hibridização sequencial e paralela. Realizaremos uma série de experimentos combinando e testando algoritmos de otimização relevantes.

Andrey Dik
Publicado o artigo Algoritmos de otimização de população: Resistência a ficar preso em extremos locais (Parte II)
Algoritmos de otimização de população: Resistência a ficar preso em extremos locais (Parte II)

Continuamos nosso experimento que visa examinar o comportamento dos algoritmos de otimização de população no contexto de sua capacidade de escapar eficientemente de mínimos locais quando a diversidade da população é baixa e alcançar máximos globais. Os resultados da pesquisa são fornecidos.

Andrey Dik
AO Core Чтобы обеспечить самооптимизацию советника для реализации любых требуемых возможностей и функциональностей, используется схема, представленная на рисунке 1. На временной шкале "История" советник позиционируется в точке "время сейчас", где принимается решение об оптимизации...
Andrey Dik
AO Core To ensure self-optimization of the advisor for implementing any required capabilities and functionalities, the scheme presented in Figure 1 is employed. On the "History" timeline, the advisor is positioned at the "time now" point where the optimization decision is made...
Andrey Dik
Publicado o artigo Algoritmos de otimização populacional: Resistência a ficar preso em extremos locais (Parte I)
Algoritmos de otimização populacional: Resistência a ficar preso em extremos locais (Parte I)

Este artigo apresenta um experimento único que visa examinar o comportamento dos algoritmos de otimização populacional no contexto de sua capacidade de escapar eficientemente de mínimos locais quando a diversidade populacional é baixa e alcançar máximos globais. Trabalhar nessa direção fornecerá uma visão mais aprofundada sobre quais algoritmos específicos podem continuar sua busca com sucesso usando coordenadas definidas pelo usuário como ponto de partida e quais fatores influenciam seu sucesso.

Andrey Dik
Publicado o artigo Classe base de algoritmos populacionais como alicerce para otimização eficiente
Classe base de algoritmos populacionais como alicerce para otimização eficiente

Uma tentativa única de pesquisa para combinar uma série de algoritmos populacionais em uma única classe com o objetivo de simplificar a aplicação dos métodos de otimização. Essa abordagem não apenas abre possibilidades para o desenvolvimento de novos algoritmos, incluindo variantes híbridas, mas também estabelece um banco de testes básico universal. Este banco se torna uma ferramenta chave para a escolha do algoritmo ideal, dependendo da tarefa específica em questão.

Andrey Dik
Publicado o artigo Usando algoritmos de otimização para configurar parâmetros de EA em tempo real
Usando algoritmos de otimização para configurar parâmetros de EA em tempo real

O artigo discute os aspectos práticos do uso de algoritmos de otimização para encontrar os melhores parâmetros de EA em tempo real, bem como a virtualização das operações de negociação e da lógica do EA. O artigo pode ser usado como instrução para implementar algoritmos de otimização em um EA.

Andrey Dik
Publicado o artigo Algoritmos de otimização populacionais: objetos de busca multissociais artificiais (artificial Multi-Social search Objects, MSO)
Algoritmos de otimização populacionais: objetos de busca multissociais artificiais (artificial Multi-Social search Objects, MSO)

Continuação do artigo anterior como desenvolvimento da ideia de grupos sociais. No novo artigo, explora-se a evolução dos grupos sociais utilizando algoritmos de movimentação e memória. Os resultados ajudarão a entender a evolução dos sistemas sociais e aplicá-los na otimização e busca de soluções.

Andrey Dik
Publicado o artigo Algoritmos de otimização populacionais: evolução de grupos sociais (Evolution of Social Groups, ESG)
Algoritmos de otimização populacionais: evolução de grupos sociais (Evolution of Social Groups, ESG)

Neste artigo, consideraremos o princípio de construção de algoritmos multipopulacionais e, como exemplo desse tipo de algoritmos, analisaremos a Evolução de Grupos Sociais (ESG), um novo algoritmo autoral. Analisaremos os conceitos principais, os mecanismos de interação entre populações e as vantagens desse algoritmo, bem como examinaremos seu desempenho em tarefas de otimização.

Andrey Dik
Publicado o artigo Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte II
Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte II

Neste artigo, vamos considerar o algoritmo genético binário (BGA), que modela os processos naturais que ocorrem no material genético dos seres vivos na natureza.

Andrey Dik
Publicado o artigo Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte I
Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte I

Neste artigo, vamos realizar um estudo sobre vários métodos aplicados em algoritmos genéticos binários e outros algoritmos populacionais. Vamos examinar os componentes principais do algoritmo, como seleção, crossover e mutação, bem como seu impacto no processo de otimização. Além disso, vamos explorar as formas de representação de informações e seu impacto nos resultados de otimização.

Andrey Dik
Publicado o artigo Algoritmos de otimização populacional: sistema imune micro-artificial (Micro Artificial Immune System, Micro-AIS)
Algoritmos de otimização populacional: sistema imune micro-artificial (Micro Artificial Immune System, Micro-AIS)

Este artigo fala sobre um método de otimização baseado nos princípios de funcionamento do sistema imunológico do organismo — Micro Artificial Immune System (Micro-AIS) — uma modificação do AIS. O Micro-AIS utiliza um modelo mais simples do sistema imunológico e operações mais simples de processamento de informações imunológicas. O artigo também aborda as vantagens e desvantagens do Micro-AIS em comparação com o AIS tradicional.

Andrey Dik
Publicado o artigo Algoritmos de otimização populacionais: algoritmo híbrido de otimização de forrageamento bacteriano com algoritmo genético (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)
Algoritmos de otimização populacionais: algoritmo híbrido de otimização de forrageamento bacteriano com algoritmo genético (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)

Este artigo apresenta uma nova abordagem para resolver problemas de otimização, combinando as ideias dos algoritmos de otimização de forrageamento bacteriano (BFO) com as técnicas usadas no algoritmo genético (GA), resultando no algoritmo híbrido BFO-GA. Ele utiliza o comportamento de enxameamento das bactérias para a busca global da solução ótima e operadores genéticos para refinar os ótimos locais. Ao contrário do BFO original, as bactérias agora podem mutar e herdar genes.

Andrey Dik
Publicado o artigo Algoritmos de otimização populacional: algoritmos de estratégias evolutivas (Evolution Strategies, (μ,λ)-ES e (μ+λ)-ES)
Algoritmos de otimização populacional: algoritmos de estratégias evolutivas (Evolution Strategies, (μ,λ)-ES e (μ+λ)-ES)

Neste artigo, vamos falar sobre um grupo de algoritmos de otimização conhecidos como "Estratégias Evolutivas" (Evolution Strategies ou ES). Eles são alguns dos primeiros algoritmos que usam princípios de evolução para encontrar soluções ótimas. Vamos mostrar as mudanças feitas nas versões clássicas das ES, além de revisar a função de teste e a metodologia de avaliação dos algoritmos.

Andrey Dik
Publicado o artigo Algoritmos de otimização populacional: Mudamos a forma e deslocamos as distribuições de probabilidade e testamos com o "Cabeçudinho Inteligente" (Smart Cephalopod, SC)
Algoritmos de otimização populacional: Mudamos a forma e deslocamos as distribuições de probabilidade e testamos com o "Cabeçudinho Inteligente" (Smart Cephalopod, SC)

Com este artigo investigaremos como a mudança de forma das distribuições de probabilidade afetam o desempenho dos algoritmos de otimização. Realizaremos experimentos baseados no algoritmo de teste "cabeçudinho inteligente" (Smart Cephalopod, SC) para avaliar o desempenho de diferentes distribuições de probabilidade no contexto de tarefas de otimização.

Andrey Dik
Publicado o artigo Algoritmos de otimização populacional: simulação de têmpera isotrópica (Simulated Isotropic Annealing, SIA). Parte II
Algoritmos de otimização populacional: simulação de têmpera isotrópica (Simulated Isotropic Annealing, SIA). Parte II

A primeira parte do artigo foi dedicada ao conhecido e popular algoritmo de têmpera simulada, onde foram analisadas suas vantagens e descritos detalhadamente os pontos fracos. A segunda parte do artigo é dedicada a uma transformação radical do algoritmo, seu renascimento em um novo algoritmo de otimização, a simulação de têmpera isotrópica, SIA.

Andrey Dik
Publicado o artigo Algoritmos de otimização populacional: simulação de têmpera (Simulated Annealing, SA). Parte I
Algoritmos de otimização populacional: simulação de têmpera (Simulated Annealing, SA). Parte I

O algoritmo de simulação de têmpera é uma metaheurística inspirada no processo de têmpera de metais. Neste artigo, realizaremos uma análise detalhada do algoritmo e mostraremos como muitas concepções comuns e mitos em torno deste método de otimização popular e amplamente conhecido podem ser equivocados e incompletos. Anúncio da segunda parte do artigo: "Conheça nosso algoritmo autoral de simulação de têmpera isotrópica (Simulated Isotropic Annealing, SIA)!"

Andrey Dik
Publicado o artigo Algoritmos de otimização populacional: Método Nelder-Mead (NM)
Algoritmos de otimização populacional: Método Nelder-Mead (NM)

O artigo apresenta um estudo completo do método Nelder-Mead explicando como o simplex — o espaço dos parâmetros da função — muda e se reestrutura a cada iteração para alcançar a solução ótima, e também descreve como melhorar este método.