Andrey Dik
Andrey Dik
4.4 (26)
  • Información
12+ años
experiencia
5
productos
87
versiones demo
15
trabajos
0
señales
0
suscriptores
I WILL CONSIDER PROPOSALS FOR THE PUBLICATION OF A BOOK (TEXTBOOK) ON OPTIMIZATION ALGORITHMS.

A group for communication on optimization and free product testing://t.me/+vazsAAcney4zYmZi
Attention! My Telegram doppelgangers have appeared, my real nickname is @JQS_aka_Joo

My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

All my publications: https://www.mql5.com/en/users/joo/publications

I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.

I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller

Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
Andrey Dik
Ha publicado el artículo Algoritmo de optimización de sociedad anárquica (Anarchic Society Optimization, ASO)
Algoritmo de optimización de sociedad anárquica (Anarchic Society Optimization, ASO)

En este artículo, nos familiarizaremos con el algoritmo de optimización de sociedad anárquica (Anarchic Society Optimization, ASO) y discutiremos cómo un algoritmo basado en el comportamiento irracional y aventurero de los participantes en una sociedad anárquica (un sistema anómalo de interacción social libre de poder centralizado y varios tipos de jerarquías) es capaz de explorar el espacio de soluciones y evitar las trampas del óptimo local. El artículo presenta una estructura ASO unificada aplicable tanto a problemas continuos como discretos.

Andrey Dik
Ha publicado el artículo Algoritmo de optimización basado en la migración animal (Animal Migration Optimization, AMO)
Algoritmo de optimización basado en la migración animal (Animal Migration Optimization, AMO)

El artículo está dedicado al algoritmo AMO, que modela la migración estacional de los animales en busca de condiciones óptimas para la vida y la reproducción. Las principales características de AMO incluyen el uso de vecindad topológica y un mecanismo de actualización probabilística, lo que lo hace fácil de implementar y flexible para diversas tareas de optimización.

Andrey Dik
Ha publicado el artículo Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Pruebas y resultados
Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Pruebas y resultados

En este artículo, continuaremos analizando el algoritmo de colmena artificial ABHA profundizando en la codificación y observando los métodos restantes. Recordemos que cada abeja en el modelo está representada como un agente individual cuyo comportamiento dependerá de información interna y externa, así como del estado motivacional. Probaremos el algoritmo con varias funciones y resumiremos los resultados presentándolos en una tabla de calificación.

Andrey Dik
Ha publicado el artículo Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Teoría y métodos
Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Teoría y métodos

En este artículo nos familiarizaremos con el algoritmo de colmena artificial (ABHA), desarrollado en 2009. El algoritmo está orientado a la resolución de problemas de optimización continua. Veremos cómo el ABHA se inspira en el comportamiento de una colonia de abejas, donde cada abeja tiene un papel único que les ayuda a encontrar recursos de forma más eficiente.

Andrey Dik
Ha publicado el artículo Algoritmo de optimización del comportamiento social adaptativo (ASBO): — Adaptive Social Behavior Optimization (ASBO): Evolución en dos fases
Algoritmo de optimización del comportamiento social adaptativo (ASBO): — Adaptive Social Behavior Optimization (ASBO): Evolución en dos fases

Este artículo supone una continuación del tema del comportamiento social de los organismos vivos y su impacto en el desarrollo de un nuevo modelo matemático: el ASBO (Adaptive Social Behavior Optimization). Así, nos sumergiremos en la evolución en dos fases, probaremos el algoritmo y sacaremos conclusiones. Al igual que en la naturaleza un grupo de organismos vivos une sus esfuerzos para sobrevivir, el ASBO utiliza los principios de comportamiento colectivo para resolver problemas de optimización complejos.

Andrey Dik
Ha publicado el artículo Algoritmo de optimización del comportamiento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Método de Schwefel, método de Box-Muller
Algoritmo de optimización del comportamiento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Método de Schwefel, método de Box-Muller

Este artículo presenta una fascinante inmersión en el mundo del comportamiento social de los organismos vivos y su influencia en la creación de un nuevo modelo matemático, el ASBO (Adaptive Social Behavior Optimisation). Hoy exploraremos cómo los principios de liderazgo, vecindad y cooperación observados en las sociedades de seres vivos inspiran el desarrollo de algoritmos de optimización innovadores.

Andrey Dik
Ha publicado el artículo Algoritmo de campo eléctrico artificial (AEFA) — Artificial Electric Field Algorithm (AEFA)
Algoritmo de campo eléctrico artificial (AEFA) — Artificial Electric Field Algorithm (AEFA)

Este artículo presenta el algoritmo de campo eléctrico artificial (AEFA) inspirado en la ley de Coulomb de la fuerza electrostática. El algoritmo modela fenómenos eléctricos para resolver problemas de optimización complejos usando partículas cargadas y las interacciones de estas. El AEFA presenta propiedades únicas en el contexto de otros algoritmos relacionados con las leyes de la naturaleza.

Andrey Dik
Ha publicado el artículo Algoritmo de búsqueda por vecindad — Across Neighbourhood Search (ANS)
Algoritmo de búsqueda por vecindad — Across Neighbourhood Search (ANS)

El artículo revela el potencial del algoritmo ANS como paso importante en el desarrollo de métodos de optimización flexibles e inteligentes capaces de considerar la especificidad del problema y la dinámica del entorno en el espacio de búsqueda.

Andrey Dik
Ha publicado el artículo Algoritmo de optimización de reacciones químicas (CRO) (Parte II): Ensamblaje y resultados
Algoritmo de optimización de reacciones químicas (CRO) (Parte II): Ensamblaje y resultados

En la segunda parte, reuniremos los operadores químicos en un único algoritmo y presentaremos un análisis detallado de sus resultados. Descubramos cómo el método de optimización de reacciones químicas (CRO) aborda la solución de problemas complejos en funciones de prueba.

Andrey Dik
Ha publicado el artículo Algoritmo de optimización de reacciones químicas (CRO) (Parte I): Química de procesos en la optimización
Algoritmo de optimización de reacciones químicas (CRO) (Parte I): Química de procesos en la optimización

En la primera parte de este artículo, nos sumergiremos en el mundo de las reacciones químicas y descubriremos un nuevo enfoque de la optimización. La optimización de reacciones químicas (Chemical Reaction Optimization, CRO) utiliza principios derivados de las leyes de la termodinámica para lograr resultados eficientes. Desvelaremos los secretos de la descomposición, la síntesis y otros procesos químicos que se convirtieron en la base de este innovador método.

Andrey Dik
Ha publicado el artículo Modificaciones más notables del algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACSm)
Modificaciones más notables del algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACSm)

Aquí consideraremos la evolución del algoritmo ACS: tres modificaciones destinadas a mejorar las características de convergencia y la eficiencia del algoritmo. Transformación de uno de los principales algoritmos de optimización. De las modificaciones matriciales a los planteamientos revolucionarios en materia de formación de la población.

Andrey Dik
Ha publicado el artículo Algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACS)
Algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACS)

La búsqueda cooperativa artificial (Artificial Cooperative Search, ACS) es un método innovador que utiliza una matriz binaria y múltiples poblaciones dinámicas basadas en relaciones de mutualismo y cooperación para encontrar soluciones óptimas de forma rápida y precisa. El enfoque único de ACS sobre depredadores y presas le permite obtener excelentes resultados en problemas de optimización numérica.

Andrey Dik
Ha publicado el artículo Algoritmo de cerradura de código (Сode Lock Algorithm, CLA)
Algoritmo de cerradura de código (Сode Lock Algorithm, CLA)

En este artículo repensaremos las cerraduras de código, transformándolas de mecanismos de protección en herramientas para resolver problemas complejos de optimización. Descubra el mundo de las cerraduras de código, no como simples dispositivos de seguridad, sino como inspiración para un nuevo enfoque de la optimización. Hoy crearemos toda una población de "cerraduras" en la que cada cerradura representará una solución única a un problema. A continuación, desarrollaremos un algoritmo que "forzará" estas cerraduras y hallará soluciones óptimas en ámbitos que van desde el aprendizaje automático hasta el desarrollo de sistemas comerciales.

Andrey Dik
Ha publicado el artículo Algoritmo de cola de cometa (Comet Tail Algorithm, CTA)
Algoritmo de cola de cometa (Comet Tail Algorithm, CTA)

En este artículo, analizaremos un nuevo algoritmo de optimización de autor, el CTA (Comet Tail Algorithm), que se inspira en objetos espaciales únicos: los cometas y sus impresionantes colas que se forman al acercarse al Sol. Este algoritmo se basa en el concepto del movimiento de los cometas y sus colas, y está diseñado para encontrar soluciones óptimas en problemas de optimización.

Andrey Dik
Ha publicado el artículo Algoritmo de evolución del caparazón de tortuga (Turtle Shell Evolution Algorithm, TSEA)
Algoritmo de evolución del caparazón de tortuga (Turtle Shell Evolution Algorithm, TSEA)

Hoy hablaremos sobre un algoritmo de optimización único inspirado en la evolución del caparazón de las tortugas. El algoritmo TSEA emula la formación gradual de los sectores de piel queratinizada que representan soluciones óptimas a un problema. Las mejores soluciones se vuelven más "duras" y se encuentran más cerca de la superficie exterior, mientras que las menos exitosas permanecen "blandas" y se hallan en el interior. El algoritmo utiliza la clusterización de soluciones según su calidad y distancia, lo cual permite conservar las opciones menos acertadas y aporta flexibilidad y adaptabilidad.

Andrey Dik
Ha publicado el artículo Algoritmo de optimización Brain Storm - Brain Storm Optimization (Parte II): Multimodalidad
Algoritmo de optimización Brain Storm - Brain Storm Optimization (Parte II): Multimodalidad

En la segunda parte del artículo pasaremos a la aplicación práctica del algoritmo BSO, realizaremos tests con funciones de prueba y compararemos la eficacia de BSO con otros métodos de optimización.

Andrey Dik
Ha publicado el artículo Algoritmo de optimización Brain Storm - Brain Storm Optimization (Parte I): Clusterización
Algoritmo de optimización Brain Storm - Brain Storm Optimization (Parte I): Clusterización

En este artículo analizaremos un innovador método de optimización denominado BSO (Brain Storm Optimization), inspirado en el fenómeno natural de la tormenta de ideas. También discutiremos un nuevo enfoque de resolución de tareas de optimización multimodales que utiliza el método BSO y nos permite encontrar múltiples soluciones óptimas sin tener que determinar de antemano el número de subpoblaciones. En este artículo, también analizaremos los métodos de clusterización K-Means y K-Means++.

Andrey Dik
Andrey Dik
My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5
Мой github с алгоритмами оптимизации: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5
Andrey Dik
Ha publicado el artículo Algoritmos de optimización de la población: Algoritmo Boids, o algoritmo de comportamiento de bandada (Algoritmo Boids, Boids)
Algoritmos de optimización de la población: Algoritmo Boids, o algoritmo de comportamiento de bandada (Algoritmo Boids, Boids)

En este artículo, realizamos un estudio del algoritmo Boids, que se basa en ejemplos únicos del comportamiento de enjambre o bandada de animales. El algoritmo Boids, a su vez, ha servido de base para la creación de toda una clase de algoritmos agrupados bajo el nombre de "inteligencia de enjambre".

Andrey Dik
Ha publicado el artículo Algoritmos de optimización de la población: Algoritmo de enjambre de aves (Bird Swarm Algorithm, BSA)
Algoritmos de optimización de la población: Algoritmo de enjambre de aves (Bird Swarm Algorithm, BSA)

El artículo analiza un algoritmo BSA basado en el comportamiento de las aves, que se inspira en las interacciones colectivas de bandadas de aves en la naturaleza. Las diferentes estrategias de búsqueda de individuos en el BSA, que incluyen el cambio entre el comportamiento de vuelo, la vigilancia y la búsqueda de alimento, hacen que este algoritmo sea multidimensional. El algoritmo usa los principios del comportamiento de las bandadas, la comunicación, la adaptabilidad, el liderazgo y el seguimiento de las aves para encontrar con eficacia soluciones óptimas.