Ищи нас в Facebook!
Ставь лайки и следи за новостями

Используй новые возможности MetaTrader 5

Последние статьи на MQL5.com

Опубликована статья "Детерминированный осциллирующий поиск — Deterministic Oscillatory Search (DOS)".

Детерминированный осциллирующий поиск — Deterministic Oscillatory Search (DOS)

Алгоритм Deterministic Oscillatory Search (DOS) — инновационный метод глобальной оптимизации, сочетающий преимущества градиентных и роевых алгоритмов без использования случайных чисел. Механизм осцилляций и наклонов фитнеса позволяет DOS исследовать сложные пространства поиска детерминированным методом.

Опубликована статья "Возможности Мастера MQL5, которые вам нужно знать (Часть 43): Обучение с подкреплением с помощью SARSA".

Возможности Мастера MQL5, которые вам нужно знать (Часть 43): Обучение с подкреплением с помощью SARSA

SARSA (State-Action-Reward-State-Action, состояние-действие-вознаграждение-состояние-действие) — еще один алгоритм, который можно использовать при реализации обучения с подкреплением. Рассмотрим, как можно реализовать этот алгоритм в качестве независимой модели (а не просто механизма обучения) в советниках, собранных в Мастере, аналогично тому, как мы это делали в случаях с Q-обучением и DQN.

Опубликована статья "Ординальное кодирование номинальных переменных".

Ординальное кодирование номинальных переменных

В настоящей статье мы обсудим и продемонстрируем, как преобразовать номинальные предикторы в числовые форматы, подходящие для алгоритмов машинного обучения, используя как Python, так и MQL5.

Самые читаемые статьи за неделю

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

MetaTrader 5 на Linux

MetaTrader 5 на Linux

В этой статье расскажем, как легко установить MetaTrader 5 в популярных версиях Linux — Ubuntu и Debian. Эти системы широко используются не только на серверном оборудовании, но и на обычных компьютерах трейдерами.

Матричная модель прогнозирования на марковской цепи

Матричная модель прогнозирования на марковской цепи

Создаем матричную модель прогнозирования на марковской цепи. Что такое марковские цепи, и как можно использовать марковскую цепь для трейдинга на Форекс.

Опубликована статья "Упрощаем торговлю на новостях (Часть 4): Повышаем производительность".

Упрощаем торговлю на новостях (Часть 4): Повышаем производительность

В этой статье будут рассмотрены методы улучшения работы советника в тестере стратегий, будет написан код для разделения времени новостных событий на почасовые категории. Доступ к этим новостным событиям будет осуществляться в течение указанного для них часа. Это гарантирует, что советник может эффективно управлять сделками на основе событий как в условиях высокой, так и низкой волатильности.

Опубликована статья "Как интегрировать концепцию Smart Money (OB) в сочетании с индикатором Фибоначчи для оптимального входа в сделку".

Как интегрировать концепцию Smart Money (OB) в сочетании с индикатором Фибоначчи для оптимального входа в сделку

SMC (Order Block) — это ключевые области, где институциональные трейдеры совершают значительные покупки или продажи. После значительного движения цены уровни Фибоначчи помогают определить потенциальный откат от недавнего максимума колебания (swing high) к минимуму колебания (swing low) для определения оптимальной точки входа в сделку.

Опубликована статья "Создание советника на MQL5 на основе стратегии PIRANHA с использованием Полос Боллинджера".

Создание советника на MQL5 на основе стратегии PIRANHA с использованием Полос Боллинджера

В настоящей статье мы создаем советника (EA) на MQL5 на основе стратегии PIRANHA, использующего Полосы Боллинджера для повышения эффективности торговли. Мы обсуждаем ключевые принципы стратегии, реализацию кода, а также методы тестирования и оптимизации. Эти знания позволят эффективно использовать советник в ваших торговых сценариях

Опубликована статья "Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Окончание)".

Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Окончание)

Эта статья позволит вам увидеть, как Mamba4Cast превращает теорию в рабочий торговый алгоритм и подготовить почву для собственных экспериментов. Не упустите возможность получить полный спектр знаний и вдохновения для развития собственной стратегии.

Опубликована статья "Создание торговой панели администратора на MQL5 (Часть IV): Безопасность входа в систему".

Создание торговой панели администратора на MQL5 (Часть IV): Безопасность входа в систему

Представьте себе, что злоумышленник проник в систему управления торговли и получил доступ к компьютерам и панели администратора, используемым для передачи ценных сведений миллионам трейдеров по всему миру. Это может привести к катастрофическим последствиям, таким как несанкционированная отправка вводящих в заблуждение сообщений или случайные нажатия на кнопки, запускающие непреднамеренные действия. В этой статье мы рассмотрим меры безопасности в MQL5 и новые функции безопасности, которые мы реализовали в нашей панели администратора для защиты от этих угроз. Совершенствуя наши протоколы безопасности, мы стремимся защитить наши каналы связи и сохранить доверие членов нашего торгового сообщества.

На сайте доступно более 2,120 статей

Опубликована статья "Торговый инструментарий MQL5 (Часть 3): Разработка EX5-библиотеки для управления отложенными ордерами".

Торговый инструментарий MQL5 (Часть 3): Разработка EX5-библиотеки для управления отложенными ордерами

Вы узнаете, как разработать и внедрить комплексную библиотеку отложенных EX5-ордеров в ваш код или MQL5-проекты. Мы рассмотрим, как импортировать и реализовать такую библиотеку в составе торговой панели или графического пользовательского интерфейса (GUI). Панель ордеров советника позволит пользователям открывать, отслеживать и удалять отложенные ордера по магическому числу непосредственно из графического интерфейса в окне графика.

Опубликована статья "Самообучающийся советник с нейросетью на матрице состояний".

Самообучающийся советник с нейросетью на матрице состояний

Самообучающийся советник с нейросетью на матрице состояний. Совмещаем марковские цепи с многослойной нейросетью MLP, написанной на библиотеке ALGLIB MQL5. Как могут быть совмещены для прогнозирования Форекс марковские цепи и нейросети?

Опубликована статья "Фильтр Калмана для возвратных стратегий на рынке Форекс".

Фильтр Калмана для возвратных стратегий на рынке Форекс

Фильтр Калмана представляет собой рекурсивный алгоритм, применяемый в алготрейдинге для оценки истинного состояния финансового временного ряда посредством фильтрации шума из движения цен. Он динамически обновляет прогнозы на основе новых рыночных данных, что делает его ценным для таких адаптивных стратегий, как возвратные. В этой статье впервые представлен фильтр Калмана, а также рассмотрены его расчет и реализация. Кроме того, в качестве примера мы применим этот фильтр к классической возвратной форекс-стратегии. Наконец, проведем различные виды статистического анализа, сравнивая фильтр со скользящей средней на различных валютных парах.

Опубликована статья "Заголовок в Connexus (Часть 3): Освоение использования HTTP-заголовков для запросов".

Заголовок в Connexus (Часть 3): Освоение использования HTTP-заголовков для запросов

Продолжаем разработку библиотеки Connexus. В этой главе мы исследуем концепцию заголовков в протоколе HTTP, объясняя, что это такое, для чего они предназначены и как их использовать в запросах. Мы рассмотрим основные заголовки, используемые при взаимодействии с API, а также покажем практические примеры того, как настроить их в библиотеке.

Самые читаемые статьи за месяц

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

MetaTrader 5 на Linux

MetaTrader 5 на Linux

В этой статье расскажем, как легко установить MetaTrader 5 в популярных версиях Linux — Ubuntu и Debian. Эти системы широко используются не только на серверном оборудовании, но и на обычных компьютерах трейдерами.

Торговля по алгоритму: ИИ и его путь к золотым вершинам

Торговля по алгоритму: ИИ и его путь к золотым вершинам

В данной статье продемонстрирован подход к созданию торговых стратегий для золота с помощью машинного обучения. Рассматривая предложенный подход к анализу и прогнозированию временных рядов с разных ракурсов, можно определить его преимущества и недостатки по сравнению с другими способами создания торговых систем, основанных исключительно на анализе и прогнозировании финансовых временных рядов.

Опубликована статья "Матричная модель прогнозирования на марковской цепи".

Матричная модель прогнозирования на марковской цепи

Создаем матричную модель прогнозирования на марковской цепи. Что такое марковские цепи, и как можно использовать марковскую цепь для трейдинга на Форекс.

Опубликована статья "Интеграция MQL5 с пакетами обработки данных (Часть 3): Улучшенная визуализация данных".

Интеграция MQL5 с пакетами обработки данных (Часть 3): Улучшенная визуализация данных

В этой статье мы рассмотрим расширенную визуализацию данных, включая такие функции, как интерактивность, многослойные данные и динамические элементы, позволяющие трейдерам более эффективно изучать тренды, закономерности и корреляции.

Опубликована статья "Переосмысливаем классические стратегии (Часть IX): Анализ на нескольких таймфреймах (II)".

Переосмысливаем классические стратегии (Часть IX): Анализ на нескольких таймфреймах  (II)

В сегодняшнем обсуждении мы рассмотрим стратегию анализа на нескольких таймфреймах, чтобы узнать, на каком таймфрейме наша модель искусственного интеллекта работает лучше всего. Наш анализ приводит нас к выводу, что месячный и часовой таймфреймы дают модели с относительно низким уровнем ошибок по паре EURUSD. Мы использовали это в своих интересах и создали торговый алгоритм, который делает прогнозы с помощью искусственного интеллекта на месячном таймфрейме и совершает сделки на часовом таймфрейме.

Самые читаемые статьи за неделю

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

MetaTrader 5 на Linux

MetaTrader 5 на Linux

В этой статье расскажем, как легко установить MetaTrader 5 в популярных версиях Linux — Ubuntu и Debian. Эти системы широко используются не только на серверном оборудовании, но и на обычных компьютерах трейдерами.

Скрытые марковские модели в торговых системах на машинном обучении

Скрытые марковские модели в торговых системах на машинном обучении

Скрытые марковские модели (СММ) представляют собой мощный класс вероятностных моделей, предназначенных для анализа последовательных данных, где наблюдаемые события зависят от некоторой последовательности ненаблюдаемых (скрытых) состояний, которые формируют марковский процесс. Основные предположения СММ включают марковское свойство для скрытых состояний, означающее, что вероятность перехода в следующее состояние зависит только от текущего состояния, и независимость наблюдений при условии знания текущего скрытого состояния.

Опубликована статья "Создаем интерактивную MQL5-панель с использованием класса Controls (Часть 1): Настройка панели".

Создаем интерактивную MQL5-панель с использованием класса Controls (Часть 1): Настройка панели

В этой статье мы создадим интерактивную торговую панель с использованием класса Controls в MQL5, предназначенную для оптимизации торговых операций. Панель содержит заголовок, кнопки навигации для торговли, закрытия и информации, а также специализированные кнопки для заключения сделок и управления позициями. К концу статьи у нас будет базовая панель, готовая к дальнейшим улучшениям.

Опубликована статья "Движение цены: Математические модели и технический анализ".

Движение цены: Математические модели и технический анализ

Прогнозирование движений валютных пар является важным фактором успеха в трейдинге. Данная статья посвящена исследованию различных моделей движения цены, анализу их преимуществ и недостатков, а также практическому применению в торговых стратегиях. Мы рассмотрим подходы, позволяющие выявлять скрытые закономерности и повышать точность прогнозов.

Опубликована статья "Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Базовые модули модели)".

Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Базовые модули модели)

Продолжаем знакомство с фреймворком Mamba4Cast. И сегодня мы погрузимся в практическую реализацию предложенных подходов. Mamba4Cast создавался не для долгого прогрева на каждом новом временном ряде, а для мгновенного включения в работу. Благодаря идее Zero‑Shot Forecasting модель способна сразу выдавать качественные прогнозы на реальных данных без дообучения и тонкой настройки гиперпараметров.

Опубликована статья "От новичка до эксперта: Совместная отладка на MQL5".

От новичка до эксперта: Совместная отладка на MQL5

Политика «решения проблем» может создать четкую программу для овладения сложными навыками, такими как программирование на MQL5. Такой подход позволяет сконцентрироваться на решении проблем, одновременно развивая свои навыки. Чем больше проблем вы решаете, тем более продвинутый опыт передается в ваш мозг. Лично я считаю, что отладка - это самый эффективный способ освоить программирование. Сегодня мы рассмотрим процесс очистки кода и обсудим лучшие методы преобразования запутанной программы в ясную и функциональную. Прочтите эту статью и откройте для себя ценную информацию.

Опубликована статья "Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM (II) - Настройка LoRA".

Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM (II) - Настройка LoRA

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.

На сайте доступно более 2,110 статей

Опубликована статья "Возможности Мастера MQL5, которые вам нужно знать (Часть 42): Осциллятор ADX".

Возможности Мастера MQL5, которые вам нужно знать (Часть 42): Осциллятор ADX

ADX — еще один относительно популярный технический индикатор, используемый некоторыми трейдерами для оценки силы преобладающего тренда. Действуя как комбинация двух других индикаторов, он представляет собой осциллятор, паттерны которого мы исследуем в этой статье с помощью Мастера MQL5 и его вспомогательных классов.

Опубликована статья "Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Mamba4Cast)".

Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Mamba4Cast)

В этой статье мы знакомимся с фреймворком Mamba4Cast и подробно рассматриваем один из его ключевых компонентов — позиционное кодирование на основе временных меток. Показано, как формируется временной эмбеддинг с учётом календарной структуры данных.

Опубликована статья "Компьютерное зрение для трейдинга (Часть 2): Усложняем архитектуру до 2D-анализа RGB-изображений".

Компьютерное зрение для трейдинга (Часть 2): Усложняем архитектуру до 2D-анализа RGB-изображений

Компьютерное зрение для трейдинга, как работает и как разрабатывается по шагам. Создаем алгоритм распознавания RGB-изображений графиков цен с механизмом внимания и двунаправленным LSTM-слоем. В результате получаем рабочую модель прогнозирования цены евро-доллара с точностью до 55% на валидационном участке.

Опубликована статья "Как создать торговый журнал с помощью MetaTrader и Google Sheets".

Как создать торговый журнал с помощью MetaTrader и Google Sheets

Создайте торговый журнал с помощью MetaTrader и Google Sheets! Вы узнаете, как синхронизировать свои торговые данные с помощью HTTP POST и извлекать их с помощью HTTP-запросов. Наконец, у вас будет торговый журнал, который поможет эффективно отслеживать ваши сделки.

Самые читаемые статьи за месяц

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

MetaTrader 5 на Linux

MetaTrader 5 на Linux

В этой статье расскажем, как легко установить MetaTrader 5 в популярных версиях Linux — Ubuntu и Debian. Эти системы широко используются не только на серверном оборудовании, но и на обычных компьютерах трейдерами.

Скальперский советник Ilan 3.0 Ai с машинным обучением

Скальперский советник Ilan 3.0 Ai с машинным обучением

Помните советник Ilan 1.6 Dymanic? Попробуем улучшить его с помощью машинного обучения! Реанимируем старую разработку в статье и добавляем машинное обучение с Q-таблицей. По шагам.

Опубликована статья "Алгоритм верблюда — Camel Algorithm (CA)".

Алгоритм верблюда — Camel Algorithm (CA)

Алгоритм верблюда, разработанный в 2016 году, моделирует поведение верблюдов в пустыне для решения оптимизационных задач, учитывая факторы температуры, запасов и выносливости. В данной работе представлена еще его модифицированная версия (CAm) с ключевыми улучшениями: применение гауссова распределения при генерации решений и оптимизация параметров эффекта оазиса.

Опубликована статья "Машинное обучение и Data Science (Часть 30): Тандем из сверточных (CNN) и рекуррентных (RNN) нейросетей для прогнозирования фондового рынка".

Машинное обучение и Data Science (Часть 30): Тандем из сверточных (CNN) и рекуррентных (RNN) нейросетей для прогнозирования фондового рынка

В этой статье мы рассмотрим динамическую интеграцию сверточных нейронных сетей (CNN) и рекуррентных нейронных сетей (RNN) для задач прогнозирования фондового рынка. Для этого соединим способность CNN извлекать закономерности и эффективность RNN в обработке последовательных данных. Давайте посмотрим, как такая мощная комбинация может повысить точность и эффективность торговых алгоритмов.

Опубликована статья "Критерий независимости Гильберта-Шмидта (HSIC)".

Критерий независимости Гильберта-Шмидта (HSIC)

В статье рассматривается непараметрический статистический тест HSIC (Hilbert-Schmidt Independence Criterion) предназначенный для выявления линейных и нелинейных зависимостей в данных. Предложены реализации двух алгоритмов вычисления HSIC на языке MQL5: точного перестановочного теста и гамма-аппроксимации. Эффективность метода демонстрируется на синтетических данных, моделирующих нелинейную связь признаков и целевой переменной.

Опубликована статья "От начального до среднего уровня: Массив (III)".

От начального до среднего уровня: Массив (III)

В этой статье мы рассмотрим, как работать с массивами в MQL5, в том числе, как передавать информацию между функциями и процедурами с помощью массивов. Цель — подготовить вас к тому, что будет демонстрироваться и разъясняться в будущих материалах серии. Поэтому настоятельно рекомендую внимательно изучить то, что будет показано в этой статье.

Самые читаемые статьи за неделю

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

MetaTrader 5 на Linux

MetaTrader 5 на Linux

В этой статье расскажем, как легко установить MetaTrader 5 в популярных версиях Linux — Ubuntu и Debian. Эти системы широко используются не только на серверном оборудовании, но и на обычных компьютерах трейдерами.

MQL5-советник, интегрированный в Telegram (Часть 7): Анализ команд для автоматизации индикаторов на графиках

MQL5-советник, интегрированный в Telegram (Часть 7): Анализ команд для автоматизации индикаторов на графиках

В этой статье мы узнаем, как интегрировать команды Telegram с MQL5 для автоматизации добавления индикаторов на торговые графики. Мы рассмотрим процесс анализа пользовательских команд, их выполнение на языке MQL5 и тестирование системы для обеспечения бесперебойной торговли на основе индикаторов.

Опубликована статья "Создание торговой панели администратора на MQL5 (Часть III): Расширение встроенных классов для управления темами (II)".

Создание торговой панели администратора на MQL5 (Часть III): Расширение встроенных классов для управления темами (II)

Мы расширим существующую библиотеку Dialog, включив в нее логику управления темами. Кроме того, мы интегрируем методы переключения тем в классы CDialog, CEdit и CButton, используемые в нашем проекте панели администратора.

Опубликована статья "Количественный анализ трендов: Собираем статистику на Python".

Количественный анализ трендов: Собираем статистику на Python

Что такое количественный анализ трендов на рынке Форекс. Собираем статистику по трендам, их величине и распределению по валютной паре EURUSD. Как количественный анализ трендов поможет создать прибыльный торговый советник.

Опубликована статья "Самооптимизирующийся советник на языках MQL5 и Python (Часть V): Глубокие марковские модели".

Самооптимизирующийся советник на языках MQL5 и Python (Часть V): Глубокие марковские модели

Мы применим простую цепь Маркова к индикатору RSI, чтобы наблюдать за поведением цены после того, как индикатор проходит через ключевые уровни. Мы пришли к выводу, что самые сильные сигналы на покупку и продажу по паре NZDJPY генерируются, когда RSI находится в диапазоне 11–20 и 71–80 соответственно. Мы покажем, как можно манипулировать данными, чтобы создавать оптимальные торговые стратегии, основанные непосредственно на имеющихся данных. Кроме того, мы продемонстрируем, как обучить глубокую нейронную сеть оптимальному использованию матрицы перехода.

На сайте доступно более 2,100 статей

Опубликована статья "Применение Conditional LSTM и индикатора VAM в автоматической торговле".

Применение Conditional LSTM и индикатора VAM в автоматической торговле

В настоящей статье рассматривается разработка советника (EA) для автоматической торговли, сочетающего в себе технический анализ с прогнозами с помощью глубокого обучения.

Опубликована статья "Компонент View для таблиц в парадигме MVC на MQL5: Базовый графический элемент".

Компонент View для таблиц в парадигме MVC на MQL5: Базовый графический элемент

В статье рассматривается процесс разработки базового графического элемента для компонента View в рамках реализации таблиц в парадигме MVC (Model-View-Controller) на языке MQL5. Это первая статья, посвященная компоненту View, и третья в серии статей о создании таблиц для клиентского терминала MetaTrader 5.

Опубликована статья "Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (Окончание)".

Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (Окончание)

В статье рассматривается адаптация и практическая реализация фреймворка ACEFormer средствами MQL5 в контексте алгоритмической торговли. Показаны ключевые архитектурные решения, особенности обучения и результаты тестирования модели на реальных данных.

Опубликована статья "Скрытые марковские модели в торговых системах на машинном обучении".

Скрытые марковские модели в торговых системах на машинном обучении

Скрытые марковские модели (СММ) представляют собой мощный класс вероятностных моделей, предназначенных для анализа последовательных данных, где наблюдаемые события зависят от некоторой последовательности ненаблюдаемых (скрытых) состояний, которые формируют марковский процесс. Основные предположения СММ включают марковское свойство для скрытых состояний, означающее, что вероятность перехода в следующее состояние зависит только от текущего состояния, и независимость наблюдений при условии знания текущего скрытого состояния.

Опубликована статья "Алгоритм на основе фракталов — Fractal-Based Algorithm (FBA)".

Алгоритм на основе фракталов — Fractal-Based Algorithm (FBA)

Новый метаэвристический метод, основанный на фрактальном подходе к разделению пространства поиска для решения задач оптимизации. Алгоритм последовательно идентифицирует и разделяет перспективные области, создавая самоподобную фрактальную структуру, которая концентрирует вычислительные ресурсы на наиболее перспективных участках. Уникальный механизм мутации, направленный в сторону лучших решений, обеспечивает оптимальный баланс между исследованием и использованием пространства поиска, значительно повышая эффективность алгоритма.

Самые читаемые статьи за месяц

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

Как купить торгового робота в MetaTrader Market и установить его?

Как купить торгового робота в MetaTrader Market и установить его?

Каждый продукт в Маркете MetaTrader можно купить и через торговые платформы MetaTrader 4 и MetaTrader 5, и прямо на сайте MQL5.com. Выберите продукт, который лучше всего подходит под ваш стиль работы, оплатите его удобным для вас способом и не забудьте активировать.

MetaTrader 5 на Linux

MetaTrader 5 на Linux

В этой статье расскажем, как легко установить MetaTrader 5 в популярных версиях Linux — Ubuntu и Debian. Эти системы широко используются не только на серверном оборудовании, но и на обычных компьютерах трейдерами.

Опубликована статья "Возможности Мастера MQL5, которые вам нужно знать (Часть 41): Сети Deep-Q".

Возможности Мастера MQL5, которые вам нужно знать (Часть 41): Сети Deep-Q

Сеть Deep-Q (Deep-Q-Network) — это алгоритм обучения с подкреплением, который вовлекает нейронные сети в прогнозирование следующего значения Q и идеального действия в процессе обучения модуля машинного обучения. Мы уже рассматривали альтернативный алгоритм обучения с подкреплением — Q-обучение. Таким образом, в данной статье представлен еще один пример того, как многослойный перцептрон (multi-layer perceptron, MLP), обученный с помощью обучения с подкреплением, может использоваться в пользовательском классе сигналов.

Опубликована статья "Арбитражный трейдинг Forex: Матричная торговая система на возврат к справедливой стоимости с ограничением риска".

Арбитражный трейдинг Forex: Матричная торговая система на возврат к справедливой стоимости с ограничением риска

Статья содержит детальное описание алгоритма расчета кросс-курсов, визуализацию матрицы дисбалансов и рекомендации по оптимальной настройке параметров MinDiscrepancy и MaxRisk для эффективной торговли. Система автоматически рассчитывает "справедливую стоимость" каждой валютной пары через кросс-курсы, генерируя сигналы на покупку при отрицательных отклонениях, и на продажу — при положительных.

Опубликована статья "Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (ACEFormer)".

Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (ACEFormer)

Предлагаем познакомиться с архитектурой ACEFormer — современным решением, сочетающим эффективность вероятностного внимания и адаптивное разложение временных рядов. Материал будет полезен тем, кто ищет баланс между вычислительной производительностью и точностью прогноза на финансовых рынках.

Самые читаемые статьи за неделю

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

MetaTrader 5 на Linux

MetaTrader 5 на Linux

В этой статье расскажем, как легко установить MetaTrader 5 в популярных версиях Linux — Ubuntu и Debian. Эти системы широко используются не только на серверном оборудовании, но и на обычных компьютерах трейдерами.

Парный трейдинг: Алготорговля с автооптимизацией на разнице Z-оценки

Парный трейдинг: Алготорговля с автооптимизацией на разнице Z-оценки

В этой статье разберем, что такое парный трейдинг и как происходит торговля на корреляциях. Также создадим советник для автоматизации парного трейдинга и добавим возможность автоматической оптимизации такого торгового алгоритма на исторических данных. Кроме того, в рамках проекта узнаем, как рассчитывать расхождения двух пар с помощью z-оценки.

Опубликована статья "Компьютерное зрение для трейдинга (Часть 1): Создаем базовый простой функционал".

Компьютерное зрение для трейдинга (Часть 1): Создаем базовый простой функционал

Система прогнозирования EURUSD с применением компьютерного зрения и глубокого обучения. Узнайте, как сверточные нейронные сети могут распознавать сложные ценовые паттерны на валютном рынке и предсказывать движение курса с точностью до 54%. Статья раскрывает методологию создания алгоритма, использующего технологии искусственного интеллекта для визуального анализа графиков вместо традиционных технических индикаторов. Автор демонстрирует процесс трансформации ценовых данных в «изображения», их обработку нейронной сетью и уникальную возможность заглянуть в «сознание» ИИ через карты активации и тепловые карты внимания. Практический код на Python с использованием библиотеки MetaTrader 5 позволяет читателям воспроизвести систему и применить ее в собственной торговле.

1...67891011121314151617181920...83