Evgeniy Chernish
Evgeniy Chernish
Evgeniy Chernish
Publicado o artigo Выборочные методы марковских цепей Монте-Карло. Алгоритм HMC
Выборочные методы марковских цепей Монте-Карло. Алгоритм HMC

В статье исследуется гамильтонов алгоритм Монте-Карло (HMC) — золотой стандарт сэмплирования из сложных многомерных распределений. Представлена полноценная реализация HMC на языке MQL5, которая включает адаптивную настройку матрицы масс, поиск моды апостериорного распределения (MAP) с помощью метода оптимизации L-BFGS и комплексной диагностикой.

1
Evgeniy Chernish
Publicado o artigo Выборочные методы MCMC: Алгоритм выборки по уровням (Slice sampling)
Выборочные методы MCMC: Алгоритм выборки по уровням (Slice sampling)

В этой статье исследуется метод выборки по уровням (slice sampling) — адаптивный алгоритм MCMC, который самостоятельно регулирует параметры сэмплирования. Его эффективность продемонстрирована на моделях байесовской линейной и логистической регрессии, а результаты сравниваются с классическими частотными методами.

1
Evgeniy Chernish
Publicado o artigo Выборочные методы MCMC — Алгоритм Метрополиса-Гастингса
Выборочные методы MCMC — Алгоритм Метрополиса-Гастингса

Алгоритм Метрополиса-Гастингса — фундаментальный метод Монте-Карло по схеме марковских цепей (MCMC), широко применяемый для аппроксимации апостериорных распределений в байесовском выводе. Статья описывает теоретические основы алгоритма, реализацию класса MHSampler на MQL5 и примеры применения с анализом полученных выборок.

1
Evgeniy Chernish
Publicado o artigo Прогнозирование условного распределения с помощью MLP
Прогнозирование условного распределения с помощью MLP

В данной статье мы рассмотрим модель регрессии на базе MLP, которая прогнозирует не только условное математическое ожидание, но и условную дисперсию. Другими словами, мы будем учить нашу сеть предсказывать целое распределение будущих цен на основе входного вектора признаков. Но для этой цели нам придется написать свою собственную функцию потерь.

2
Evgeniy Chernish
Publicado o artigo Гауссовcкие процессы в машинном обучении (Часть 2): Реализация и тестирование модели классификации в MQL5
Гауссовcкие процессы в машинном обучении (Часть 2): Реализация и тестирование модели классификации в MQL5

В этой части мы рассмотрим реализацию ключевых интерфейсов библиотеки Гауссовских процессов на MQL5 — IKernel, ILikelihood и IInference. Также мы продемонстрируем её работу на синтетических данных и и напишем индикаторы для классификации и регрессии, демонстрирующие её работу в онлайн-режиме — с переобучением модели на каждом новом баре.

2
Evgeniy Chernish
Publicado o artigo Гауссовcкие процессы в машинном обучении (Часть 1): Модель классификации в MQL5
Гауссовcкие процессы в машинном обучении (Часть 1): Модель классификации в MQL5

В данной статье мы рассмотрим модель классификации гауссовских процессов. Мы начнём с изучения её теоретических принципов, а затем перейдём к практической разработке библиотеки ГП на MQL5.

2
Evgeniy Chernish
Publicado o artigo Гауссовcкие процессы в машинном обучении: регрессионная модель в MQL5
Гауссовcкие процессы в машинном обучении: регрессионная модель в MQL5

В настоящей статье мы рассмотрим основы гауссовских процессов (ГП) как вероятностную модель машинного обучения и продемонстрируем ее применение в регрессионных задачах на примере синтетических данных.

3
Evgeniy Chernish
Publicado o artigo Критерий независимости Гильберта-Шмидта (HSIC)
Критерий независимости Гильберта-Шмидта (HSIC)

В статье рассматривается непараметрический статистический тест HSIC (Hilbert-Schmidt Independence Criterion) предназначенный для выявления линейных и нелинейных зависимостей в данных. Предложены реализации двух алгоритмов вычисления HSIC на языке MQL5: точного перестановочного теста и гамма-аппроксимации. Эффективность метода демонстрируется на синтетических данных, моделирующих нелинейную связь признаков и целевой переменной.

3
Evgeniy Chernish
Publicado o artigo Análise espectral singular unidimensional
Análise espectral singular unidimensional

O artigo aborda os aspectos teóricos e práticos do método de análise espectral singular (SSA), que constitui um método eficaz de análise de séries temporais e permite representar a estrutura complexa da série como uma decomposição em componentes simples, tais como tendência, oscilações sazonais (periódicas) e ruído.

Evgeniy Chernish
Publicado o artigo Treinamento de perceptron multicamadas com o algoritmo de Levenberg-Marquardt
Treinamento de perceptron multicamadas com o algoritmo de Levenberg-Marquardt

Este artigo apresenta a implementação do algoritmo de Levenberg-Marquardt para o treinamento de redes neurais com propagação para frente. Foi feita uma análise comparativa de desempenho com os algoritmos da biblioteca scikit-learn do Python. Primeiramente, são discutidos métodos de treinamento mais simples, como a descida do gradiente, a descida do gradiente com momentum e a descida do gradiente estocástica.

Evgeniy Chernish
Publicado o artigo Previsão de taxas de câmbio usando métodos clássicos de aprendizado de máquina: Modelos Logit e Probit
Previsão de taxas de câmbio usando métodos clássicos de aprendizado de máquina: Modelos Logit e Probit

Tentou-se criar um EA para prever cotações de taxas de câmbio. Como base para o algoritmo, foram adotados modelos clássicos de classificação, como regressão logística e probit. O critério de razão de verossimilhança é utilizado para filtrar os sinais de negociação.

Evgeniy Chernish
Publicado o artigo Ferramentas econométricas para previsão de volatilidade: Modelo GARCH
Ferramentas econométricas para previsão de volatilidade: Modelo GARCH

O artigo descreve as propriedades do modelo não linear de heterocedasticidade condicional (GARCH). O indicador iGARCH para prever a volatilidade um passo à frente é construído com base nele. A biblioteca de análise numérica ALGLIB é usada para estimar os parâmetros do modelo.

Evgeniy Chernish
Publicado o artigo Elementos da análise correlacional em MQL5: Critério de independência qui-quadrado de Pearson e relação de correlação
Elementos da análise correlacional em MQL5: Critério de independência qui-quadrado de Pearson e relação de correlação

O artigo aborda as ferramentas clássicas da análise correlacional. São apresentadas as bases teóricas breves, bem como a implementação prática do critério de independência qui-quadrado de Pearson e o coeficiente de relação de correlação.

Evgeniy Chernish
Publicado o artigo Critério de homogeneidade de Smirnov como indicador de não-estacionaridade de séries temporais
Critério de homogeneidade de Smirnov como indicador de não-estacionaridade de séries temporais

Este artigo analisa um dos mais conhecidos critérios de homogeneidade não-paramétricos, o critério de Smirnov. São analisados tanto dados modelados quanto cotações reais. É apresentado um exemplo de construção do indicador de não-estacionaridade (iSmirnovDistance).

Evgeniy Chernish
Publicado o artigo Processos não estacionários e regressão espúria
Processos não estacionários e regressão espúria

O objetivo do artigo é demonstrar a ocorrência de falsa regressão quando se aplica a análise de regressão a processos não estacionários, utilizando simulação pelo método de Monte Carlo.

Evgeniy Chernish
Publicado o código PACF_ACF
O script calcula a autocorrelação e as funções de autocorrelação parcial e as exibe em um gráfico
Evgeniy Chernish
Registrado no site MQL5.community