Evgeniy Chernish / Profilo
В статье исследуется гамильтонов алгоритм Монте-Карло (HMC) — золотой стандарт сэмплирования из сложных многомерных распределений. Представлена полноценная реализация HMC на языке MQL5, которая включает адаптивную настройку матрицы масс, поиск моды апостериорного распределения (MAP) с помощью метода оптимизации L-BFGS и комплексной диагностикой.
В этой статье исследуется метод выборки по уровням (slice sampling) — адаптивный алгоритм MCMC, который самостоятельно регулирует параметры сэмплирования. Его эффективность продемонстрирована на моделях байесовской линейной и логистической регрессии, а результаты сравниваются с классическими частотными методами.
Алгоритм Метрополиса-Гастингса — фундаментальный метод Монте-Карло по схеме марковских цепей (MCMC), широко применяемый для аппроксимации апостериорных распределений в байесовском выводе. Статья описывает теоретические основы алгоритма, реализацию класса MHSampler на MQL5 и примеры применения с анализом полученных выборок.
В данной статье мы рассмотрим модель регрессии на базе MLP, которая прогнозирует не только условное математическое ожидание, но и условную дисперсию. Другими словами, мы будем учить нашу сеть предсказывать целое распределение будущих цен на основе входного вектора признаков. Но для этой цели нам придется написать свою собственную функцию потерь.
В этой части мы рассмотрим реализацию ключевых интерфейсов библиотеки Гауссовских процессов на MQL5 — IKernel, ILikelihood и IInference. Также мы продемонстрируем её работу на синтетических данных и и напишем индикаторы для классификации и регрессии, демонстрирующие её работу в онлайн-режиме — с переобучением модели на каждом новом баре.
В данной статье мы рассмотрим модель классификации гауссовских процессов. Мы начнём с изучения её теоретических принципов, а затем перейдём к практической разработке библиотеки ГП на MQL5.
В настоящей статье мы рассмотрим основы гауссовских процессов (ГП) как вероятностную модель машинного обучения и продемонстрируем ее применение в регрессионных задачах на примере синтетических данных.
В статье рассматривается непараметрический статистический тест HSIC (Hilbert-Schmidt Independence Criterion) предназначенный для выявления линейных и нелинейных зависимостей в данных. Предложены реализации двух алгоритмов вычисления HSIC на языке MQL5: точного перестановочного теста и гамма-аппроксимации. Эффективность метода демонстрируется на синтетических данных, моделирующих нелинейную связь признаков и целевой переменной.
Статья рассматривает теоретические и практические аспекты метода сингулярного спектрального анализа (SSA), который представляет собой эффективный метод анализа временных рядов, позволяющий представить сложную структуру ряда в виде разложения на простые компоненты, такие как тренд, сезонные (периодические) колебания и шум.
The article presents an implementation of the Levenberg-Marquardt algorithm for training feedforward neural networks. A comparative analysis of performance with algorithms from the scikit-learn Python library has been conducted. Simpler learning methods, such as gradient descent, gradient descent with momentum, and stochastic gradient descent are preliminarily discussed.
In the article, an attempt is made to build a trading EA for predicting exchange rate quotes. The algorithm is based on classical classification models - logistic and probit regression. The likelihood ratio criterion is used as a filter for trading signals.
The article describes the properties of the non-linear model of conditional heteroscedasticity (GARCH). The iGARCH indicator has been built on its basis for predicting volatility one step ahead. The ALGLIB numerical analysis library is used to estimate the model parameters.
The article observes classical tools of correlation analysis. An emphasis is made on brief theoretical background, as well as on the practical implementation of the Pearson chi-square test of independence and the correlation ratio.
The article considers one of the most famous non-parametric homogeneity tests – the two-sample Kolmogorov-Smirnov test. Both model data and real quotes are analyzed. The article also provides an example of constructing a non-stationarity indicator (iSmirnovDistance).
The article demonstrates spurious regression occurring when attempting to apply regression analysis to non-stationary processes using Monte Carlo simulation.