Evgeniy Chernish
Evgeniy Chernish
Evgeniy Chernish
게재된 기고글 Выборочные методы марковских цепей Монте-Карло. Алгоритм HMC
Выборочные методы марковских цепей Монте-Карло. Алгоритм HMC

В статье исследуется гамильтонов алгоритм Монте-Карло (HMC) — золотой стандарт сэмплирования из сложных многомерных распределений. Представлена полноценная реализация HMC на языке MQL5, которая включает адаптивную настройку матрицы масс, поиск моды апостериорного распределения (MAP) с помощью метода оптимизации L-BFGS и комплексной диагностикой.

1
Evgeniy Chernish
게재된 기고글 Выборочные методы MCMC: Алгоритм выборки по уровням (Slice sampling)
Выборочные методы MCMC: Алгоритм выборки по уровням (Slice sampling)

В этой статье исследуется метод выборки по уровням (slice sampling) — адаптивный алгоритм MCMC, который самостоятельно регулирует параметры сэмплирования. Его эффективность продемонстрирована на моделях байесовской линейной и логистической регрессии, а результаты сравниваются с классическими частотными методами.

1
Evgeniy Chernish
게재된 기고글 Выборочные методы MCMC — Алгоритм Метрополиса-Гастингса
Выборочные методы MCMC — Алгоритм Метрополиса-Гастингса

Алгоритм Метрополиса-Гастингса — фундаментальный метод Монте-Карло по схеме марковских цепей (MCMC), широко применяемый для аппроксимации апостериорных распределений в байесовском выводе. Статья описывает теоретические основы алгоритма, реализацию класса MHSampler на MQL5 и примеры применения с анализом полученных выборок.

1
Evgeniy Chernish
게재된 기고글 Прогнозирование условного распределения с помощью MLP
Прогнозирование условного распределения с помощью MLP

В данной статье мы рассмотрим модель регрессии на базе MLP, которая прогнозирует не только условное математическое ожидание, но и условную дисперсию. Другими словами, мы будем учить нашу сеть предсказывать целое распределение будущих цен на основе входного вектора признаков. Но для этой цели нам придется написать свою собственную функцию потерь.

2
Evgeniy Chernish
게재된 기고글 Гауссовcкие процессы в машинном обучении (Часть 2): Реализация и тестирование модели классификации в MQL5
Гауссовcкие процессы в машинном обучении (Часть 2): Реализация и тестирование модели классификации в MQL5

В этой части мы рассмотрим реализацию ключевых интерфейсов библиотеки Гауссовских процессов на MQL5 — IKernel, ILikelihood и IInference. Также мы продемонстрируем её работу на синтетических данных и и напишем индикаторы для классификации и регрессии, демонстрирующие её работу в онлайн-режиме — с переобучением модели на каждом новом баре.

2
Evgeniy Chernish
게재된 기고글 Гауссовcкие процессы в машинном обучении (Часть 1): Модель классификации в MQL5
Гауссовcкие процессы в машинном обучении (Часть 1): Модель классификации в MQL5

В данной статье мы рассмотрим модель классификации гауссовских процессов. Мы начнём с изучения её теоретических принципов, а затем перейдём к практической разработке библиотеки ГП на MQL5.

2
Evgeniy Chernish
게재된 기고글 Гауссовcкие процессы в машинном обучении: регрессионная модель в MQL5
Гауссовcкие процессы в машинном обучении: регрессионная модель в MQL5

В настоящей статье мы рассмотрим основы гауссовских процессов (ГП) как вероятностную модель машинного обучения и продемонстрируем ее применение в регрессионных задачах на примере синтетических данных.

3
Evgeniy Chernish
게재된 기고글 Критерий независимости Гильберта-Шмидта (HSIC)
Критерий независимости Гильберта-Шмидта (HSIC)

В статье рассматривается непараметрический статистический тест HSIC (Hilbert-Schmidt Independence Criterion) предназначенный для выявления линейных и нелинейных зависимостей в данных. Предложены реализации двух алгоритмов вычисления HSIC на языке MQL5: точного перестановочного теста и гамма-аппроксимации. Эффективность метода демонстрируется на синтетических данных, моделирующих нелинейную связь признаков и целевой переменной.

3
Evgeniy Chernish
게재된 기고글 Одномерный сингулярный спектральный анализ
Одномерный сингулярный спектральный анализ

Статья рассматривает теоретические и практические аспекты метода сингулярного спектрального анализа (SSA), который представляет собой эффективный метод анализа временных рядов, позволяющий представить сложную структуру ряда в виде разложения на простые компоненты, такие как тренд, сезонные (периодические) колебания и шум.

1
Evgeniy Chernish
게재된 기고글 Training a multilayer perceptron using the Levenberg-Marquardt algorithm
Training a multilayer perceptron using the Levenberg-Marquardt algorithm

The article presents an implementation of the Levenberg-Marquardt algorithm for training feedforward neural networks. A comparative analysis of performance with algorithms from the scikit-learn Python library has been conducted. Simpler learning methods, such as gradient descent, gradient descent with momentum, and stochastic gradient descent are preliminarily discussed.

3
Evgeniy Chernish
게재된 기고글 Forecasting exchange rates using classic machine learning methods: Logit and Probit models
Forecasting exchange rates using classic machine learning methods: Logit and Probit models

In the article, an attempt is made to build a trading EA for predicting exchange rate quotes. The algorithm is based on classical classification models - logistic and probit regression. The likelihood ratio criterion is used as a filter for trading signals.

1
Evgeniy Chernish
게재된 기고글 Econometric tools for forecasting volatility: GARCH model
Econometric tools for forecasting volatility: GARCH model

The article describes the properties of the non-linear model of conditional heteroscedasticity (GARCH). The iGARCH indicator has been built on its basis for predicting volatility one step ahead. The ALGLIB numerical analysis library is used to estimate the model parameters.

1
Evgeniy Chernish
게재된 기고글 Elements of correlation analysis in MQL5: Pearson chi-square test of independence and correlation ratio
Elements of correlation analysis in MQL5: Pearson chi-square test of independence and correlation ratio

The article observes classical tools of correlation analysis. An emphasis is made on brief theoretical background, as well as on the practical implementation of the Pearson chi-square test of independence and the correlation ratio.

1
Evgeniy Chernish
게재된 기고글 Two-sample Kolmogorov-Smirnov test as an indicator of time series non-stationarity
Two-sample Kolmogorov-Smirnov test as an indicator of time series non-stationarity

The article considers one of the most famous non-parametric homogeneity tests – the two-sample Kolmogorov-Smirnov test. Both model data and real quotes are analyzed. The article also provides an example of constructing a non-stationarity indicator (iSmirnovDistance).

1
Evgeniy Chernish
게재된 기고글 Non-stationary processes and spurious regression
Non-stationary processes and spurious regression

The article demonstrates spurious regression occurring when attempting to apply regression analysis to non-stationary processes using Monte Carlo simulation.

1
Evgeniy Chernish
게재된 코드 PACF_ACF
스크립트는 자동 상관 관계 및 부분 자동 상관 관계 함수를 계산하여 그래프에 표시합니다.
Evgeniy Chernish
MQL5.커뮤니티에 등록됨