Evgeniy Chernish
Evgeniy Chernish
Evgeniy Chernish
Ha publicado el artículo Выборочные методы марковских цепей Монте-Карло. Алгоритм HMC
Выборочные методы марковских цепей Монте-Карло. Алгоритм HMC

В статье исследуется гамильтонов алгоритм Монте-Карло (HMC) — золотой стандарт сэмплирования из сложных многомерных распределений. Представлена полноценная реализация HMC на языке MQL5, которая включает адаптивную настройку матрицы масс, поиск моды апостериорного распределения (MAP) с помощью метода оптимизации L-BFGS и комплексной диагностикой.

2
Evgeniy Chernish
Ha publicado el artículo Выборочные методы MCMC: Алгоритм выборки по уровням (Slice sampling)
Выборочные методы MCMC: Алгоритм выборки по уровням (Slice sampling)

В этой статье исследуется метод выборки по уровням (slice sampling) — адаптивный алгоритм MCMC, который самостоятельно регулирует параметры сэмплирования. Его эффективность продемонстрирована на моделях байесовской линейной и логистической регрессии, а результаты сравниваются с классическими частотными методами.

2
Evgeniy Chernish
Ha publicado el artículo Выборочные методы MCMC — Алгоритм Метрополиса-Гастингса
Выборочные методы MCMC — Алгоритм Метрополиса-Гастингса

Алгоритм Метрополиса-Гастингса — фундаментальный метод Монте-Карло по схеме марковских цепей (MCMC), широко применяемый для аппроксимации апостериорных распределений в байесовском выводе. Статья описывает теоретические основы алгоритма, реализацию класса MHSampler на MQL5 и примеры применения с анализом полученных выборок.

2
Evgeniy Chernish
Ha publicado el artículo Прогнозирование условного распределения с помощью MLP
Прогнозирование условного распределения с помощью MLP

В данной статье мы рассмотрим модель регрессии на базе MLP, которая прогнозирует не только условное математическое ожидание, но и условную дисперсию. Другими словами, мы будем учить нашу сеть предсказывать целое распределение будущих цен на основе входного вектора признаков. Но для этой цели нам придется написать свою собственную функцию потерь.

2
Evgeniy Chernish
Ha publicado el artículo Гауссовcкие процессы в машинном обучении (Часть 2): Реализация и тестирование модели классификации в MQL5
Гауссовcкие процессы в машинном обучении (Часть 2): Реализация и тестирование модели классификации в MQL5

В этой части мы рассмотрим реализацию ключевых интерфейсов библиотеки Гауссовских процессов на MQL5 — IKernel, ILikelihood и IInference. Также мы продемонстрируем её работу на синтетических данных и и напишем индикаторы для классификации и регрессии, демонстрирующие её работу в онлайн-режиме — с переобучением модели на каждом новом баре.

2
Evgeniy Chernish
Ha publicado el artículo Гауссовcкие процессы в машинном обучении (Часть 1): Модель классификации в MQL5
Гауссовcкие процессы в машинном обучении (Часть 1): Модель классификации в MQL5

В данной статье мы рассмотрим модель классификации гауссовских процессов. Мы начнём с изучения её теоретических принципов, а затем перейдём к практической разработке библиотеки ГП на MQL5.

2
Evgeniy Chernish
Ha publicado el artículo Гауссовcкие процессы в машинном обучении: регрессионная модель в MQL5
Гауссовcкие процессы в машинном обучении: регрессионная модель в MQL5

В настоящей статье мы рассмотрим основы гауссовских процессов (ГП) как вероятностную модель машинного обучения и продемонстрируем ее применение в регрессионных задачах на примере синтетических данных.

3
Evgeniy Chernish
Ha publicado el artículo Критерий независимости Гильберта-Шмидта (HSIC)
Критерий независимости Гильберта-Шмидта (HSIC)

В статье рассматривается непараметрический статистический тест HSIC (Hilbert-Schmidt Independence Criterion) предназначенный для выявления линейных и нелинейных зависимостей в данных. Предложены реализации двух алгоритмов вычисления HSIC на языке MQL5: точного перестановочного теста и гамма-аппроксимации. Эффективность метода демонстрируется на синтетических данных, моделирующих нелинейную связь признаков и целевой переменной.

3
Evgeniy Chernish
Ha publicado el artículo Одномерный сингулярный спектральный анализ
Одномерный сингулярный спектральный анализ

Статья рассматривает теоретические и практические аспекты метода сингулярного спектрального анализа (SSA), который представляет собой эффективный метод анализа временных рядов, позволяющий представить сложную структуру ряда в виде разложения на простые компоненты, такие как тренд, сезонные (периодические) колебания и шум.

1
Evgeniy Chernish
Ha publicado el artículo Entrenamos un perceptrón multicapa usando el algoritmo de Levenberg-Marquardt
Entrenamos un perceptrón multicapa usando el algoritmo de Levenberg-Marquardt

Este artículo le presentaremos una implementación del algoritmo Levenberg-Marquardt para el entrenamiento de redes neuronales de propagación directa. Asimismo, realizaremos un análisis comparativo del rendimiento usando algoritmos de la biblioteca scikit-learn Python. También discutiremos preliminarmente los métodos de aprendizaje más sencillos como el descenso de gradiente, el descenso de gradiente con impulso y el descenso de gradiente estocástico.

Evgeniy Chernish
Ha publicado el artículo Predicción de tipos de cambio mediante métodos clásicos de aprendizaje automático: Modelos Logit y Probit
Predicción de tipos de cambio mediante métodos clásicos de aprendizaje automático: Modelos Logit y Probit

Hoy hemos intentado construir un experto comercial para predecir las cotizaciones de los tipos de cambio. El algoritmo se basa en modelos de clasificación clásicos: la regresión logística y probit. Como filtro para las señales comerciales, hemos utilizado el criterio de la razón de verosimilitud.

Evgeniy Chernish
Ha publicado el artículo Herramientas econométricas para la previsión de la volatilidad: el modelo GARCH
Herramientas econométricas para la previsión de la volatilidad: el modelo GARCH

El presente artículo describe las propiedades de un modelo de heteroscedasticidad condicional no lineal (GARCH). Sobre esta base se construye el indicador iGARCH para predecir la volatilidad un paso por delante. Para estimar los parámetros del modelo se usará la biblioteca de análisis numérico ALGLIB.

Evgeniy Chernish
Ha publicado el artículo Elementos del análisis de correlación en MQL5: Prueba chi-cuadrado de Pearson de independencia y ratio de correlación.
Elementos del análisis de correlación en MQL5: Prueba chi-cuadrado de Pearson de independencia y ratio de correlación.

El artículo analiza las herramientas clásicas del análisis de correlaciones. Se hace hincapié en los breves antecedentes teóricos, así como en la aplicación práctica de la prueba de independencia chi-cuadrado de Pearson y la ratio de correlación.

Evgeniy Chernish
Ha publicado el artículo El criterio de homogeneidad de Smirnov como indicador de la no estacionariedad de las series temporales
El criterio de homogeneidad de Smirnov como indicador de la no estacionariedad de las series temporales

El artículo analiza uno de los criterios de homogeneidad no paramétricos más famosos: el criterio de Smirnov. Asimismo, se consideran tanto datos modelo como cotizaciones reales, y se ofrece un ejemplo de construcción de un indicador de no estacionariedad (iSmirnovDistance).

Evgeniy Chernish
Ha publicado el artículo Procesos no estacionarios y regresión espuria
Procesos no estacionarios y regresión espuria

El presente artículo pretende demostrar la aparición de regresiones espurias cuando se intenta aplicar el análisis de regresión a procesos no estacionarios utilizando la simulación de Montecarlo.

Evgeniy Chernish
Ha publicado el código PACF_ACF
El script calcula las funciones de autocorrelación y autocorrelación parcial y las muestra en un gráfico
Evgeniy Chernish
Se ha registrado en MQL5.community