
MQL5入門(第10回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド
この記事では、プロジェクトベースのアプローチを使用してRSIベースのエキスパートアドバイザー(EA)を作成する方法に焦点を当て、MQL5の組み込みインジケーターの活用方法を紹介します。RSI値を取得して活用し、流動性スイープに対応し、チャートオブジェクトを使用して取引の視覚化を強化する方法を学びます。さらに、パーセンテージベースのリスク設定、リスク報酬比率の実装、利益確保のためのリスク修正など、効果的なリスク管理についても解説します。

ケリー基準とモンテカルロシミュレーションを使用したポートフォリオリスクモデル
数十年にわたり、トレーダーは破産リスクを最小限に抑えつつ長期的な資産成長を最大化する手法として、ケリー基準の公式を活用してきました。しかし、単一のバックテスト結果に基づいてケリー基準を盲目的に適用することは、個人トレーダーにとって非常に危険です。というのも、実際の取引では時間の経過とともに取引優位性が薄れ、過去の実績は将来の結果を保証するものではないからです。本記事では、Pythonによるモンテカルロシミュレーションの結果を取り入れ、MetaTrader 5上で1つ以上のエキスパートアドバイザー(EA)にケリー基準を現実的に適用するためのリスク配分アプローチを紹介します。

MQL5経済指標カレンダーを使った取引(第5回):レスポンシブコントロールとフィルターボタンでダッシュボードを強化する
この記事では、ダッシュボードの制御を改善するために、通貨ペアフィルター、重要度レベル、時間フィルター、キャンセルオプションのボタンを作成します。これらのボタンは、ユーザーのアクションに動的に応答するようにプログラムされており、シームレスな操作を可能にします。また、ダッシュボードにリアルタイムの変更を反映するために、ユーザーの行動を自動化します。これにより、パネルの全体的な機能性、モビリティ、応答性が向上します。

MQL5で取引管理者パネルを作成する(第8回):分析パネル
今日は、管理パネルEAに統合された専用ウィンドウ内に、便利な取引メトリクスを組み込む方法について掘り下げていきます。本稿では、MQL5を活用して分析パネル(Analytics Panel)を開発する方法に焦点を当て、そのパネルが取引管理者にもたらすデータの価値について解説します。この開発プロセスは教育的意義が大きく、初心者・経験者を問わず開発者にとって有益な学びを提供します。この機能は、高度なソフトウェアツールを通じて取引マネージャーを支援する本連載の可能性を示す好例です。さらに、取引管理パネル(Trading Administrator Panel)の機能拡張の一環として、PieChartクラスとChartCanvasクラスの実装についても取り上げます。

MQL5経済指標カレンダーを使った取引(第4回):ダッシュボードでのリアルタイムニュース更新の実装
この記事では、リアルタイムのニュース更新機能を実装することで、経済指標カレンダーダッシュボードを強化し、市場情報を常に最新かつ実用的な状態に保ちます。MQL5におけるライブデータ取得技術を統合し、ダッシュボード上のイベントを継続的に更新することで、インターフェイスの応答性を向上させます。このアップデートにより、ダッシュボードから最新の経済ニュースに直接アクセスでき、最新データに基づいて取引判断を最適化できるようになります。

MQL5で取引管理者パネルを作成する(第6回):取引管理パネル(II)
この記事では、多機能管理パネルの取引管理パネル(Trade Management Panel)を強化します。コードを簡素化し、読みやすさ、保守性、効率性を向上させる強力なヘルパー関数を導入します。また、追加のボタンをシームレスに統合し、インターフェイスを強化して、より幅広い取引タスクを処理する方法も紹介します。ポジションの管理、注文の調整、ユーザーとのやり取りの簡素化など、このガイドは、堅牢でユーザーフレンドリーな取引管理パネルの開発に役立ちます。

MQL5経済指標カレンダーを使った取引(第3回):通貨、重要度、時間フィルターの追加
この記事では、MQL5経済カレンダーダッシュボードにフィルターを実装し、通貨、重要度、時間ごとにニュースイベントの表示を絞り込みます。まず、各カテゴリのフィルター基準を設定し、それをダッシュボードに組み込むことで、関連するイベントのみが表示されるようにします。最後に、各フィルターが動的に更新され、トレーダーにとって必要な、焦点を絞ったリアルタイムの経済情報が提供されるようにします。

MQL5で取引管理者パネルを作成する(第7回):信頼できるユーザー、回復、暗号化
チャートの更新や管理パネル(Admin Panel) EAとのチャットに新しいペアを追加する際、または端末を再起動するたびにトリガーされるセキュリティプロンプトは、時に煩わしく感じられることがあります。このディスカッションでは、ログイン試行回数を追跡して信頼できるユーザーを識別する機能を検討し、実装します。一定回数の試行に失敗した場合、アプリケーションは高度なログイン手続きに移行し、パスコードを忘れたユーザーが回復できるようにします。さらに、管理パネルに暗号化を効果的に統合してセキュリティを強化する方法についても取り上げます。

MQL5での取引戦略の自動化(第1回):Profitunityシステム(ビル・ウィリアムズ著「Trading Chaos」)
この記事では、ビル・ウィリアムズのProfitunityシステムを詳しく分析し、その核心となる構成要素や、市場の混乱の中での独自の取引アプローチを解説します。MQL5用いたシステムの実装方法を、主要なインジケーターやエントリー/エグジットシグナルの自動化に焦点を当てながら説明します。さらに、戦略のテストと最適化をおこない、さまざまな市場環境におけるパフォーマンスについて考察します。

PythonからMQL5へ:量子に着想を得た取引システムへの旅
この記事では、量子に着想を得た取引システムの開発について検討し、Pythonプロトタイプから実際の取引のためのMQL5実装への移行について説明します。このシステムは、量子シミュレーターを使用した従来のコンピューター上で実行されますが、重ね合わせや量子もつれなどの量子コンピューティングの原理を使用して市場の状態を分析します。主な機能には、8つの市場状態を同時に分析する3量子ビットシステム、24時間のルックバック期間、および市場分析用の7つのテクニカル指標が含まれます。精度率は控えめに思えるかもしれませんが、適切なリスク管理戦略と組み合わせると大きな優位性が得られます。

MQL5経済指標カレンダーを使った取引(第2回):ニュースダッシュボードパネルの作成
この記事では、MQL5経済指標カレンダーを使用して、取引戦略を強化するための実用的なニュースダッシュボードパネルを作成します。まず、イベント名、重要度、タイミングなどの重要な要素に焦点を当ててレイアウトを設計し、その後、MQL5内でのセットアップに進みます。最後に、最も関連性の高いニュースのみを表示するフィルタリングシステムを実装し、トレーダーが影響力のある経済イベントに迅速にアクセスできるようにします。

MQL5で取引管理者パネルを作成する(第6回):多機能インターフェイス(I)
取引管理者の役割はTelegram通信だけにとどまらず、注文管理、ポジション追跡、インターフェイスのカスタマイズなど、さまざまな制御アクティビティにも携わります。この記事では、MQL5の複数の機能をサポートするためにプログラムを拡張するための実用的な洞察を共有します。このアップデートは、主にコミュニケーションに重点を置くという現在のAdminパネルの制限を克服し、より幅広いタスクを処理できるようにすることを目的としています。

人工藻類アルゴリズム(AAA)
本稿では、微細藻類に特徴的な生物学的プロセスに基づく人工藻類アルゴリズム(AAA)について考察します。このアルゴリズムには、螺旋運動、進化過程、適応過程が含まれており、最適化問題を解くことができます。この記事では、AAAが機能する原理と、数学的モデリングにおけるその可能性について詳しく分析し、自然とアルゴリズムによる解とのつながりを強調しています。

ウィリアム・ギャンの手法(第1回):ギャンアングルインジケーターの作成
ギャン理論の本質は何でしょうか。ギャンアングルはどのように構築されるのでしょうか。本記事では、MetaTrader5向けのギャンアングルインジケーターを作成します。

動物移動最適化(AMO)アルゴリズム
この記事は、生命と繁殖に最適な条件を求めて動物が季節的に移動する様子をモデル化するAMOアルゴリズムについて説明しています。AMOの主な機能には、トポロジカル近傍の使用と確率的更新メカニズムが含まれており、実装が容易で、さまざまな最適化タスクに柔軟に対応できます。

人工蜂の巣アルゴリズム(ABHA):テストと結果
この記事では、人工蜂の巣アルゴリズム(ABHA)の探索を続け、コードの詳細を掘り下げるとともに、残りのメソッドについて考察します。ご存じのとおり、このモデルにおける各蜂は個別のエージェントとして表現されており、その行動は内部情報、外部情報、および動機付けの状態に依存します。さまざまな関数を用いてアルゴリズムをテストし、その結果を評価表としてまとめて提示します。

多通貨エキスパートアドバイザーの開発(第16回):異なるクォート履歴がテスト結果に与える影響
開発中のエキスパートアドバイザー(EA)は、さまざまなブローカーとの取引で良好な結果を示すことが期待されていますが、現時点では、MetaQuotesデモ口座からのクォートを使用してテストを実行しています。テストや最適化に使用したクォートとは異なる価格データを持つ取引口座でも、EAが正しく機能する準備が整っているのかを確認してみましょう。

多通貨エキスパートアドバイザーの開発(第15回):実際の取引のためのEAの準備
既製のエキスパートアドバイザー(EA)の完成に徐々に近づくにつれ、取引戦略のテスト段階では二次的に思える問題にも注意を払う必要があります。これらの問題は、実際の取引に移行する際に重要となります。

多通貨エキスパートアドバイザーの開発(第14回):リスクマネージャーにおける適応型ボリューム変更
以前開発されたリスクマネージャーには基本的な機能のみが含まれていました。取引戦略のロジックに干渉することなく取引結果を向上させるために、どのような開発の可能性があるかを検討してみましょう。

MQL5経済指標カレンダーを使った取引(第1回):MQL5経済指標カレンダーの機能をマスターする
この記事では、まず、MQL5経済指標カレンダーの基本機能を理解し、それを取引に活用する方法を探ります。次に、MQL5で経済指標カレンダーの主要機能を実装し、取引の判断に役立つニュースを取得する方法を説明します。最後に、この情報を活用して取引戦略を効果的に強化する方法を紹介します。

MacOSでのMetaTrader 5
macOS上のMetaTrader 5取引プラットフォーム用の特別なインストーラーを提供します。これは、アプリケーションをネイティブにインストールできる本格的なウィザードです。インストーラーは、システムの識別、最新のWineバージョンのダウンロードとインストール、設定の適用、その後のMetaTraderのインストールまで、すべての手順を自動で実行します。インストールが完了すると、すぐにプラットフォームを使用できます。

Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第2回):ボタンの応答性の追加
この記事では、ボタンの応答性を有効にすることで、静的なMQL5ダッシュボードパネルをインタラクティブなツールへと変換することに焦点を当てます。GUIコンポーネントの機能を自動化し、ユーザーのクリックに適切に反応する方法を探究します。この記事の最後には、ユーザーのエンゲージメントと取引体験を向上させる動的なインターフェイスを構築します。

Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(II)
エキスパートアドバイザー(EA)に統合できる戦略の数は、事実上無限と言えます。しかし、戦略を追加するたびにアルゴリズムの複雑さが増していきます。複数の戦略を組み込むことで、EAは多様な市場環境により柔軟に適応し、収益性を向上させる可能性が高まります。本日は、Trend Constraint EAの機能をさらに強化するための取り組みとして、リチャード・ドンチャンが開発した著名な戦略のひとつを対象に、MQL5を活用する方法をご紹介します。

日足レンジブレイクアウト戦略に基づくMQL5 EAの作成
この記事では、日足レンジブレイクアウト(Daily Range Breakout)戦略に基づいてMQL5エキスパートアドバイザー(EA)を作成します。戦略の重要な概念を説明し、EAの設計図を設計し、MQL5でブレイクアウトロジックを実装します。最後に、EAの効果を最大限に引き出すためのバックテストと最適化の手法について探ります。

Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第1回):パネルの設定
この記事では、取引操作を効率化するために設計されたMQL5のControlsクラスを使用して、インタラクティブな取引ダッシュボードを作成します。パネルには、タイトル、[Trade]、[Close]、[Information]のナビゲーションボタン、取引の実行とポジションの管理用の専用アクションボタンが表示されます。この記事を読み終える頃には、今後の記事でさらに機能強化するための基礎パネルが完成しているはずです。

データサイエンスとML(第31回):取引のためのCatBoost AIモデルの使用
CatBoost AIモデルは、その予測精度、効率性、散在する困難なデータセットに対する頑健性により、機械学習コミュニティの間で最近大きな人気を博しています。この記事では、外国為替市場を打ち負かすために、この種のモデルをどのように導入するかについて詳しく説明します。

独自のLLMをEAに統合する(第5部):LLMs(II)-LoRA-チューニングによる取引戦略の開発とテスト
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニング(微調整)し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。

MetaTraderとGoogleスプレッドシートを使用して取引ジャーナルを作成する方法
MetaTraderとGoogleスプレッドシートを使用して取引ジャーナルを作成しましょう。HTTP POST経由で取引データを同期し、HTTPリクエストを使用して取得する方法を学習します。最終的には、取引を効果的かつ効率的に追跡するのに役立つ取引ジャーナルが手に入ります。

データサイエンスとML(第30回):株式市場を予測するパワーカップル、畳み込みニューラルネットワーク(CNN)と再帰型ニューラルネットワーク(RNN)
本稿では、株式市場予測における畳み込みニューラルネットワーク(CNN)と再帰型ニューラルネットワーク(RNN)の動的統合を探求します。CNNのパターン抽出能力と、RNNの逐次データ処理能力を活用します。この強力な組み合わせが、取引アルゴリズムの精度と効率をどのように高めることができるかを見てみましょう。

MQL5で取引管理者パネルを作成する(第3回):ビジュアルスタイリングによるGUIの強化(I)
この記事では、MQL5を使用して、取引管理パネルのグラフィカルユーザーインターフェイス(GUI)を視覚的にスタイル設定することに焦点を当てます。MQL5で利用できるさまざまなテクニックと機能について説明します。これらのテクニックと機能により、インターフェイスのカスタマイズと最適化が可能になり、魅力的な外観を維持しながらトレーダーのニーズを満たすことができます。

確率最適化と最適制御の例
SMOC(Stochastic Model Optimal Controlの略と思われる)と名付けられたこのエキスパートアドバイザー(EA)は、MetaTrader 5用の高度なアルゴリズム取引システムのシンプルな例です。テクニカル指標、モデル予測制御、動的リスク管理を組み合わせて取引判断をおこないます。このEAには、適応パラメーター、ボラティリティに基づくポジションサイジング、トレンド分析が組み込まれており、さまざまな市場環境においてパフォーマンスを最適化します。

多通貨エキスパートアドバイザーの開発(第12回):プロップトレーディングレベルのリスクマネージャーの育成
開発中のEAには、ドローダウンを制御するための特定のメカニズムがすでに備わっています。しかし、これは過去の価格データに対するテストの結果に基づいているため、本質的には確率的です。したがって、ドローダウンは最大予想値を超える場合があります (ただし、確率は小さいです)。指定されたドローダウン レベルへの準拠を保証するメカニズムを追加してみましょう。

MQL5のパラボリックSARトレンド戦略による取引戦略の自動化:効果的なEAの作成
この記事では、MQL5を使用してパラボリックSAR戦略を基にした取引戦略を自動化する方法について説明します。効果的なエキスパートアドバイザー(EA)を創り出します。このEAは、パラボリックSAR指標によって識別されたトレンドに基づいて取引を実行します。

ダイナミックマルチペアEAの形成(第1回):通貨相関と逆相関
ダイナミックマルチペアEAは、相関戦略と逆相関戦略の両方を活用し、取引パフォーマンスの最適化を図ります。リアルタイムの市場データを分析することで、通貨ペア間の相関関係や逆相関関係を特定し、それらを取引に活かします。

Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザー(EA)の開発 (II)
独立したEAについて考えてみましょう。前回は、リスクとリターンのジオメトリを描くために独立したスクリプトと連携する、指標ベースのEAについて説明しました。今回は、すべての機能を1つのプログラムに統合したMQL5 EAのアーキテクチャについて解説します。

ニュース取引が簡単に(第3回):取引の実施
この記事では、ニュース取引エキスパートアドバイザー(EA)で、データベースに保存されている経済指標カレンダーに基づいて取引を開始します。さらに、EAのグラフィックを改善し、今後の経済指標カレンダーイベントに関するより適切な情報を表示する予定です。

Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザーの開発 (I)
今回は、前回の記事で作成した指標を元に、MQL5で最初のエキスパートアドバイザー(EA)を作成します。リスク管理を含め、取引プロセスを自動化するために必要な全機能を紹介します。これにより、手動の取引執行から自動化されたシステムへとスムーズに移行できるメリットがあります。

アルゴリズム取引のリスクマネージャー
本稿の目的は、リスクマネージャーを利用する必要性を証明し、アルゴリズム取引におけるリスク管理の原則を別クラスで実践することで、金融市場におけるデイ取引と投資におけるリスク標準化アプローチの有効性を誰もが検証できるようにすることです。この記事では、アルゴリズム取引用のリスクマネージャークラスを作成します。これは、手動取引のリスクマネージャーの作成について述べた前回の記事の論理的な続きです。

多通貨エキスパートアドバイザーの開発(第10回):文字列からオブジェクトを作成する
エキスパートアドバイザー(EA)の開発計画は複数の段階で構成されており、中間結果はデータベースに保存されます。しかし、これらの結果はオブジェクトとしてではなく、文字列や数値としてのみ抽出できます。したがって、データベースから読み込んだ文字列を基に、EAで目的のオブジェクトを再構築する方法が必要です。

SMAとEMAを使った自動最適化された利益確定と指標パラメータの例
この記事では、機械学習とテクニカル分析を組み合わせた、FX取引向けの高度なEAを紹介します。アップル株取引を中心に、適応的な最適化やリスク管理、複数の取引戦略を活用しています。バックテストでは、収益性が高い一方で、大きなドローダウンを伴う結果が得られており、さらなる改良の余地が示唆されています。