Artikel über das Programmieren in MQL4 und MQL5

Lernen Sie die Sprache von Handelsstrategien MQL5 nach den hier veröffentlichten Artikeln, die meisten von denen Sie - die Mitglieder der Community - geschrieben haben. Alle Artikel sind in drei Kategorien aufgeteilt, damit man eine Antwort auf unterschiedliche Fragen des Programmierens schnell finden könnte: "Integration", "Tester", "Handelsstrategien" und vieles mehr.

Verfolgen Sie neue Veröffentlichungen und diskutieren Sie über diese im Forum!

Neuer Artikel

Andere Klassen in der Bibliothek DoEasy (Teil 67): Objektklasse der Charts

In diesem Artikel werde ich die Objektklasse der Charts (das einzelne Chart eines Handelsinstruments) erstellen und die Kollektionsklasse von MQL5-Signalobjekten so verbessern, dass jedes in der

Brute-Force-Ansatz zur Mustersuche (Teil IV): Minimale Funktionalität

In diesem Artikel wird eine verbesserte Brute-Force-Variante vorgestellt, die auf den im vorherigen Artikel gesetzten Zielen basiert. Ich werde versuchen, dieses Thema so breit wie möglich zu

Andere Klassen in der Bibliothek DoEasy (Teil 66): MQL5.com die Kollektionsklasse der Signale

In diesem Artikel werde ich die Kollektionsklasse der Signale des MQL5.com Signals-Dienstes mit den Funktionen zur Verwaltung von Signalen erstellen. Außerdem werde ich die Schnappschuss-Objektklasse

Neuronale Netze leicht gemacht (Teil 12): Dropout

Als nächsten Schritt beim Studium von neuronalen Netzwerken schlage ich vor, die Methoden zur Erhöhung der Konvergenz beim Training von neuronalen Netzwerken zu besprechen. Es gibt mehrere solcher

Preise und Signale in der DoEasy-Bibliothek (Teil 65): Kollektion der Markttiefe und die Klasse für die Arbeit mit MQL5.com- Signalen

In diesem Artikel werde ich die Kollektionsklasse für die Markttiefe aller Symbole erstellen und mit der Entwicklung der Funktionalität für die Arbeit mit dem MQL5.com Signals-Dienst beginnen, indem

Maschinelles Lernen für Grid- und Martingale-Handelssysteme. Würden Sie darauf wetten?

Dieser Artikel beschreibt die Technik des maschinellen Lernens, die auf den Grid- und Martingale-Handel angewendet wird. Überraschenderweise hat dieser Ansatz wenig bis gar keine Verbreitung im

Preise in der DoEasy-Bibliothek (Teil 64): Markttiefe, Klassenobjekte für Schnappschüsse der Markttiefe und der Schnappschuss-Reihen

In diesem Artikel werde ich zwei Klassen erstellen (die Klassenobjekte des DOM-Schnappschusses und die der DOM-Schnappschuss-Reihe) und die Erstellung der DOM-Datenreihe testen

Der selbstanpassenden Algorithmus (Teil IV): Zusätzliche Funktionen und Tests

Ich fahre fort, den Algorithmus mit der minimal notwendigen Funktionalität zu entwickeln und die Ergebnisse zu testen. Die Rentabilität ist recht gering, aber die Artikel demonstrieren das Modell des

Nützliche und exotische Techniken für den automatisierten Handel

In diesem Artikel werde ich einige sehr interessante und nützliche Techniken für den automatisierten Handel vorstellen. Einige davon sind Ihnen vielleicht schon bekannt. Ich werde versuchen, die

Neuronale Netze leicht gemacht (Teil 11): Ein Blick auf GPT

Eines der fortschrittlichsten Modelle unter den derzeit existierenden neuronalen Netzen für Sprachen ist vielleicht GPT-3, dessen maximale Variante 175 Milliarden Parameter enthält. Natürlich werden

Preise in der DoEasy-Bibliothek (Teil 63): Markttiefe und deren abstrakte Anforderungsklasse

In diesem Artikel werde ich mit der Entwicklung der Funktionalität für die Arbeit mit der Markttiefe (Depth of Market, DOM) beginnen. Ich werde auch die Klasse des abstrakten Objekts der Markttiefe

Preise in der DoEasy-Bibliothek (Teil 62): Aktualisieren der Tick-Serien in Echtzeit, Vorbereitung für die Arbeit mit Markttiefe

In diesem Artikel werde ich die Aktualisierung der Tick-Daten in Echtzeit implementieren und die Symbol-Objektklasse für die Arbeit mit Markttiefe (Depth of Market, DOM) vorbereiten (das DOM selbst

Preise in der DoEasy-Bibliothek (Teil 61): Kollektion der Tickserien eines Symbols

Da ein Programm bei seiner Arbeit verschiedene Symbole verwenden kann, sollte für jedes dieser Symbole eine eigene Liste erstellt werden. In diesem Artikel werde ich solche Listen zu einer

Mehrschicht-Perceptron und Backpropagation-Algorithmus

Die Popularität dieser beiden Methoden wächst, sodass viele Bibliotheken in Matlab, R, Python, C++ und anderen entwickelt wurden, die einen Trainingssatz als Eingabe erhalten und automatisch ein

Preise in der DoEasy-Bibliothek (Teil 60): Listen von Serien mit Symbol-Tickdaten

In diesem Artikel werde ich eine Liste zur Speicherung von Tickdaten eines einzelnen Symbols erstellen und deren Erstellung und Abruf der benötigten Daten in einem EA überprüfen. Tickdatenlisten, die

Entwicklung eines selbstanpassenden Algorithmus (Teil III): Verzicht auf Optimierung

Es ist unmöglich, einen wirklich stabilen Algorithmus zu erhalten, wenn wir die Optimierung auf Basis historischer Daten zur Auswahl der Parameter verwenden. Ein stabiler Algorithmus sollte wissen

Praktische Anwendung von Neuronalen Netzen im Handel (Teil 2). Computerbilder

Die Verwendung von Computerbilder ermöglicht das Training von Neuronalen Netzen auf der visuellen Darstellung des Kurscharts und der Indikatoren. Diese Methode ermöglicht breitere Operationen mit dem

Neuronale Netze leicht gemacht (Teil 10): Multi-Head Attention

Wir haben zuvor den Mechanismus der Self-Attention (Selbstaufmerksamkeit) in neuronalen Netzen besprochen. In der Praxis verwenden moderne neuronale Netzwerkarchitekturen mehrere parallele

Entwicklung eines selbstanpassenden Algorithmus (Teil II): Effizienzverbesserungen

In diesem Artikel werde ich die Entwicklung des Themas fortsetzen, indem ich die Flexibilität des zuvor erstellten Algorithmus verbessere. Der Algorithmus wurde stabiler mit einer Erhöhung der Anzahl

Brute-Force-Ansatz zur Mustersuche (Teil III): Neue Horizonte

Dieser Artikel bietet eine Fortsetzung des Brute-Force-Themas und führt neue Möglichkeiten der Marktanalyse in den Programmalgorithmus ein, wodurch die Geschwindigkeit der Analyse beschleunigt und die

Über das Finden von zeitlicher Mustern im Devisenmarkt mit dem CatBoost-Algorithmus

Der Artikel befasst sich mit dem Erstellen von Machine-Learning-Modellen mit Zeitfiltern und diskutiert die Effektivität dieses Ansatzes. Der menschliche Faktor kann nun eliminiert werden, indem das

Der Markt und die Physik seiner globalen Muster

In diesem Artikel werde ich versuchen, die Annahme zu testen, dass jedes System mit auch nur einem kleinen Verständnis des Marktes auf globaler Ebene funktionieren kann. Ich werde keine Theorien oder

Neuronale Netze leicht gemacht (Teil 9): Dokumentation der Arbeit

Wir haben schon einen langen Weg hinter uns und der Code in unserer Bibliothek wird immer umfangreicher. Das macht es schwierig, den Überblick über alle Verbindungen und Abhängigkeiten zu behalten

Entwicklung eines selbstanpassenden Algorithmus (Teil I): Finden eines Grundmusters

In der kommenden Artikelserie werde ich die Entwicklung von selbstanpassenden Algorithmen unter Berücksichtigung der meisten Marktfaktoren demonstrieren, sowie zeigen, wie man diese Situationen

Zeitreihen in der Bibliothek DoEasy (Teil 59): Objekt zum Speichern der Daten eines Ticks

Ab diesem Artikel beginnen wir mit der Erstellung von Bibliotheksfunktionen für die Arbeit mit Preisdaten. Heute erstellen wir eine Objektklasse, die alle Preisdaten speichert, die mit einem weiteren

Neuronale Netze leicht gemacht (Teil 8): Attention-Mechanismen

In früheren Artikeln haben wir bereits verschiedene Möglichkeiten zur Organisation neuronaler Netze getestet. Wir haben auch Convolutional Networks (Faltungsnetze) besprochen, die aus

Verwendung von Tabellenkalkulationen zur Erstellung von Handelsstrategien

Der Artikel beschreibt die grundlegenden Prinzipien und Methoden, die es Ihnen ermöglichen, jede Strategie mithilfe von Tabellenkalkulationen (Excel, Calc, Google) zu analysieren. Die erzielten

Zeitreihen in der Bibliothek DoEasy (Teil 58): Zeitreihen der Datenpuffer von Indikatoren

Zum Abschluss des Themas Arbeit mit Zeitreihen organisieren wir das Speichern, Suchen und Sortieren von Daten, die in Indikatorpuffern gespeichert sind, was die weitere Durchführung der Analyse auf

Brute-Force-Ansatz zur Mustersuche (Teil II): Immersion

In diesem Artikel werden wir die Diskussion über den Brute-Force-Ansatz fortsetzen. Ich werde versuchen, das Muster anhand der neuen, verbesserten Version meiner Anwendung besser zu erklären. Ich

Ein manuelles Chart- und Handelswerkzeug (Teil II). Werkzeuge zum Zeichnen von Chart-Grafiken

Dies ist der nächste Artikel der Serie, in dem ich zeige, wie ich eine komfortable Bibliothek für die manuelle Anwendung von Chart-Grafiken unter Verwendung von Tastaturkürzeln erstellt habe. Zu den

Websockets für MetaTrader 5

Vor der Einführung der Netzwerkfunktionen, die mit der aktualisierten MQL5-API zur Verfügung gestellt wurde, waren MetaTrader-Programme in ihrer Fähigkeit beschränkt, sich mit Websocket-basierten

Wie kann man $1.000.000 durch algorithmischen Handel verdienen? Nutzen Sie die Dienste von MQL5.com!

Alle Händler gehen auf den Markt mit dem Ziel, ihre erste Million Dollar zu verdienen. Wie kann man das ohne übermäßiges Risiko und großem Startkapital erreichen? Die Dienstleistungen von MQL5.com

Neuronale Netze leicht gemacht (Teil 7): Adaptive Optimierungsverfahren

In früheren Artikeln haben wir den stochastischen Gradientenabstieg verwendet, um ein neuronales Netzwerk mit der gleichen Lernrate für alle Neuronen innerhalb des Netzwerks zu trainieren. In diesem

Analysieren von Charts mit den Level von DeMark Sequential und Murray-Gann

Thomas DeMark Sequential ist gut darin, Gleichgewichtsänderungen in der Preisbewegung anzuzeigen. Dies wird besonders deutlich, wenn wir seine Signale mit einem Pegelindikator, zum Beispiel

Gradient Boosting beim transduktiven und aktiven maschinellen Lernen

In diesem Artikel werden wir aktive Methoden des maschinellen Lernens anhand von realen Daten betrachten und ihre Vor- und Nachteile diskutieren. Vielleicht helfen Ihnen diese Methoden und Sie werden

Zeitreihen in der Bibliothek DoEasy (Teil 57): Das Datenobjekt der Indikatorpuffer

Wir entwickeln in diesem Artikel ein Objekt, das alle Daten eines Puffers für einen Indikator enthalten wird. Solche Objekte werden für die Speicherung serieller Daten von Indikatorpuffern benötigt

Neuronale Netze leicht gemacht (Teil 6): Experimentieren mit der Lernrate des neuronalen Netzwerks

Wir haben zuvor verschiedene Arten von neuronalen Netzen zusammen mit ihren Implementierungen betrachtet. In allen Fällen wurden die neuronalen Netze mit der Gradientenverfahren trainiert, für die wir

Zeitreihen in der Bibliothek DoEasy (Teil 56): Nutzerdefiniertes Indikatorobjekt, das die Daten von Indikatorobjekten aus der Kollektion holt

In dem Artikel wird das Erstellen des nutzerdefinierten Indikatorobjekts für die Verwendung in EAs erklärt. Lassen Sie uns die Bibliotheksklassen leicht verbessern und Methoden hinzufügen, um Daten

Optimale Vorgehensweise für Entwicklung und Analyse von Handelssystemen

In diesem Artikel zeige ich Ihnen die Kriterien, die Sie bei der Auswahl eines Systems oder Signals für die Investition Ihrer Gelder berücksichtigen sollten. Außerdem beschreibe ich die optimale

Praktische Anwendung von neuronalen Netzen im Handel. Python (Teil I)

In diesem Artikel werden wir die schrittweise Implementierung eines Handelssystems analysieren, das auf der Programmierung von tiefen neuronalen Netzen in Python basiert. Dies wird unter Verwendung