Maxim Dmitrievsky / Профиль
- Информация
11+ лет
опыт работы
|
0
продуктов
|
0
демо-версий
|
0
работ
|
0
сигналов
|
0
подписчиков
|

Скрытые марковские модели (СММ) представляют собой мощный класс вероятностных моделей, предназначенных для анализа последовательных данных, где наблюдаемые события зависят от некоторой последовательности ненаблюдаемых (скрытых) состояний, которые формируют марковский процесс. Основные предположения СММ включают марковское свойство для скрытых состояний, означающее, что вероятность перехода в следующее состояние зависит только от текущего состояния, и независимость наблюдений при условии знания текущего скрытого состояния.

В данной статье продемонстрирован подход к созданию торговых стратегий для золота с помощью машинного обучения. Рассматривая предложенный подход к анализу и прогнозированию временных рядов с разных ракурсов, можно определить его преимущества и недостатки по сравнению с другими способами создания торговых систем, основанных исключительно на анализе и прогнозировании финансовых временных рядов.

В данной статье рассматривается подход к торговле только в выбранном направлении (на покупку или на продажу). Для этого используется техника причинно-следственного вывода и машинное обучение.

В данной статье предложен оригинальный подход к разработке трендовых стратегий. Вы узнаете, как можно делать разметку обучающих примеров и обучать на них классификаторы. На выходе получатся готовые торговые системы, работающие под управлением терминала MetaTrader 5.

В данной статье предлагается очередной оригинальный подход к созданию торговых систем на основе машинного обучения, с использованием кластеризации и разметки сделок для стратегий возврата к среднему.

В статье реализован быстрый тестер стратегий для моделей машинного обучения с применением Numba. По скорости он превосходит тестер стратегий на чистом Python в 50 раз. Автор рекомендует использовать эту библиотеку для ускорения математических расчетов и особенно там, где используются циклы.

https://www.mql5.com/ru/channels/machinelearning

Алгоритмы кластеризации в машинном обучении — это важные алгоритмы обучения без учителя, которые позволяют разделять исходные данные на группы с похожими наблюдениями. Используя эти группы, можно проводить анализ рынка для конкретного кластера, искать наиболее устойчивые кластеры на новых данных, а также делать причинно-следственный вывод. В статье предложен авторский метод кластеризации временных рядов на языке Python.

В статье рассматривается тема матчинга в причинно-следственном выводе. Матчинг используется для сопоставления похожих наблюдений в наборе данных. Это необходимо для правильного определения каузальных эффектов, избавления от предвзятости. Автор рассказывает, как это помогает в построении торговых систем на машинном обучении, которые становятся более устойчивыми на новых данных, на которых не обучались. Центральная роль отводится показателю склонности, который широко используется в причинно-следственном выводе.

В этой статье мы рассмотрим теорию причинно-следственного вывода с применением машинного обучения, а также реализацию авторского подхода на языке Python. Причинно-следственный вывод и причинно-следственное мышление берут свои корни в философии и психологии, это важная часть нашего способа мыслить эту реальность.

В данной статье предложен авторский способ создания ботов с использованием машинного обучения.

Данная статья познакомит читателя с техникой машинного обучения для торговли сеткой и мартингейлом. К моему удивлению, такой подход по каким-то причинам совершенно не затронут в глобальной сети. Прочитав статью, вы сможете создавать своих собственных ботов.

В статье показана возможность создания моделей машинного обучения с временными фильтрами и раскрыта эффективность такого подхода. Теперь можно исключить человеческий фактор, просто сказав модели: "Хочу, чтобы ты торговала в определенный час определенного дня недели". А поиск закономерностей возложить на плечи алгоритма.

В данной статье вы познакомитесь с методами активного машинного обучения на реальных данных, узнаете какие плюсы и минусы они имеют. Возможно, эти методы займут свое место в вашем арсенале моделей машинного обучения. Термин трансдукции был введен Владимиром Наумовичем Вапником, изобретателем машины опорных векторов или SVM (support vector machine).

В данной статье описан один из возможных подходов к трансформации данных для улучшения обобщающей способности модели, а также рассмотрен перебор моделей CatBoost и выбор лучшей из них.

Обучение классификатора CatBoost на языке Python и экспорт модели в mql5 формат, а также разбор параметров модели и кастомный тестер стратегий. Для подготовки данных и обучения модели используется язык программирования Python и библиотека MetaTrader5.

Расширенное исследование сезонных характеристик: автокорреляция тепловые карты и диаграммы рассеяния. Целью текущей статьи является показать, что "память рынка" имеет сезонный характер, который выражается через максимизацию корреляции приращений произвольного порядка.

Исследование сезонных характеристик финансовых временных рядов при помощи диаграмм Boxplot. Каждый отдельный ящик с усами дает хорошее представление о том, как распределены значения в наборе данных. Boxplots не следует путать с графиком японских свечей, хотя они визуально похожи.

Область применения дробного дифференцирования достаточно широка. Например, алгоритмы машинного обучения, обычно, принимают дифференцированный ряд на вход. Проблема в том, что необходимо вывести новые данные в соответствии с имеющейся историей, чтобы модель машинного обучения смогла распознать их. В данной статье рассматривается оригинальный подход к дифференцированию временного ряда, в дополнении к этому приводится пример самооптимизирующейся ТС на основе полученного дифференцированного ряда.