Maxim Dmitrievsky / 个人资料
- 信息
10+ 年
经验
|
0
产品
|
0
演示版
|
0
工作
|
0
信号
|
0
订阅者
|

В статье реализован быстрый тестер стратегий для моделей машинного обучения с применением Numba. По скорости он превосходит тестер стратегий на чистом Python в 50 раз. Автор рекомендует использовать эту библиотеку для ускорения математических расчетов и особенно там, где используются циклы.

https://www.mql5.com/ru/channels/machinelearning

在机器学习中,聚类算法是重要的无监督学习算法,它们可以将原始数据划分为具有相似观测值的组。利用这些组,可以分析特定聚类的市场情况,使用新数据寻找最稳定的聚类,并进行因果推断。本文提出了一种在Python中进行时间序列聚类的原创方法。

本文探讨因果推理中的匹配问题。匹配用于比较数据集中的类似观察结果,这对于正确确定因果关系和消除偏见是必要的。作者解释了这如何有助于构建基于机器学习的交易系统,这些系统在没有经过训练的新数据上变得更加稳定。倾向性评分在因果推理中起着核心作用并被广泛应用。

在本文中,我们将研究使用机器学习的因果推理理论,以及 Python 中的自定义方法实现。因果推理和因果思维植根于哲学和心理学,在我们理解现实中起着重要作用。

本文介绍了应用于网格和马丁格尔交易的机器学习技术。 令人惊讶的是,这种方法在全球网络中难觅踪迹。 阅读过本文之后,您将能够创建自己的交易机器人。

本文探索了用时间过滤器建立机器学习模型,并讨论了这种方法的有效性。现在,只要简单地指示模型在一周中某一天的某个时间进行交易,就可以消除人为因素。模式搜索可以由单独的算法提供。

在本文中,我们将探讨利用真实数据的主动机器学习方法,并讨论它们的优缺点。也许你会发现这些方法很有用,并将它们包含在你的机器学习模型库中。直推是由支持向量机(SVM)的共同发明者弗拉基米尔·瓦普尼克(Vladimir Vapnik)提出的。

本文描述了一种可能的数据转换方法,旨在提高模型的通用性,并讨论了 CatBoost 模型的采样和选择。

在 Python 中训练 CatBoost 分类器,并将模型导出到mql5,以及解析模型参数和自定义策略测试程序。Python 语言和 MetaTrader 5 库用于准备数据和训练模型。