Maxim Dmitrievsky
Maxim Dmitrievsky
2.2 (120)
  • Informations
11+ années
expérience
0
produits
0
versions de démo
0
offres d’emploi
0
signaux
0
les abonnés
There are two hard problems in computer science: 1) computers and 2) science.
Maxim Dmitrievsky
Article publié Выявление и классификация фрактальных паттернов посредством машинного обучения
Выявление и классификация фрактальных паттернов посредством машинного обучения

В этой статье мы затронем интригующую тему фрактального анализа и прогнозирования рынков посредством машинного обучения. Это только первые шаги на пути к исследованию многообразных фрактальных структур, которые образуются на графиках финансовых котировок. Мы используем корреляцию для поиска паттернов и алгоритм CatBoost для классификации этих паттернов.

2
Maxim Dmitrievsky
Article publié Введение в исследование фрактальных рыночных структур с помощью машинного обучения
Введение в исследование фрактальных рыночных структур с помощью машинного обучения

В данной статье предпринята попытка рассмотрения финансовых временных рядов с точки зрения самоподобных фрактальных структур. Поскольку мы имеем слишком много аналогий, которые подтверждают возможность рассматривать рыночные котировки в качестве самоподобных фракталов, то имеем возможность составить представления о горизонтах прогнозирования таких структур.

3
Maxim Dmitrievsky
Article publié Изучаем конформное прогнозирование финансовых временных рядов
Изучаем конформное прогнозирование финансовых временных рядов

В этой статье вы познакомитесь с конформными предсказаниями и библиотекой MAPIE, которая их реализует. Данный подход является одним из самых современных в машинном обучении и позволяет сосредоточиться на контроле рисков для уже существующих разнообразных моделей машинного обучения. Конформные предсказания, сами по себе, не являются способом поиска закономерностей в данных. Они лишь определяют степень уверенности существующих моделей в предсказании конкретных примеров и позволяют фильтровать надежные предсказания.

3
Maxim Dmitrievsky
Article publié Скрытые марковские модели в торговых системах на машинном обучении
Скрытые марковские модели в торговых системах на машинном обучении

Скрытые марковские модели (СММ) представляют собой мощный класс вероятностных моделей, предназначенных для анализа последовательных данных, где наблюдаемые события зависят от некоторой последовательности ненаблюдаемых (скрытых) состояний, которые формируют марковский процесс. Основные предположения СММ включают марковское свойство для скрытых состояний, означающее, что вероятность перехода в следующее состояние зависит только от текущего состояния, и независимость наблюдений при условии знания текущего скрытого состояния.

3
Maxim Dmitrievsky
Article publié Торговля по алгоритму: ИИ и его путь к золотым вершинам
Торговля по алгоритму: ИИ и его путь к золотым вершинам

В данной статье продемонстрирован подход к созданию торговых стратегий для золота с помощью машинного обучения. Рассматривая предложенный подход к анализу и прогнозированию временных рядов с разных ракурсов, можно определить его преимущества и недостатки по сравнению с другими способами создания торговых систем, основанных исключительно на анализе и прогнозировании финансовых временных рядов.

6
Maxim Dmitrievsky
Article publié Машинное обучение в однонаправленной трендовой торговле на примере золота
Машинное обучение в однонаправленной трендовой торговле на примере золота

В данной статье рассматривается подход к торговле только в выбранном направлении (на покупку или на продажу). Для этого используется техника причинно-следственного вывода и машинное обучение.

3
Maxim Dmitrievsky
Article publié Разработка трендовых торговых стратегий на основе машинного обучения
Разработка трендовых торговых стратегий на основе машинного обучения

В данной статье предложен оригинальный подход к разработке трендовых стратегий. Вы узнаете, как можно делать разметку обучающих примеров и обучать на них классификаторы. На выходе получатся готовые торговые системы, работающие под управлением терминала MetaTrader 5.

4
Maxim Dmitrievsky
Article publié Cоздание стратегии возврата к среднему на основе машинного обучения
Cоздание стратегии возврата к среднему на основе машинного обучения

В данной статье предлагается очередной оригинальный подход к созданию торговых систем на основе машинного обучения, с использованием кластеризации и разметки сделок для стратегий возврата к среднему.

4
Maxim Dmitrievsky
Article publié Fast trading strategy tester in Python using Numba
Fast trading strategy tester in Python using Numba

The article implements a fast strategy tester for machine learning models using Numba. It is 50 times faster than the pure Python strategy tester. The author recommends using this library to speed up mathematical calculations, especially the ones involving loops.

5
Maxim Dmitrievsky
Maxim Dmitrievsky
Want to learn more about machine learning? Subscribe this channel to receive the latest and actual information!

https://www.mql5.com/ru/channels/machinelearning
Maxim Dmitrievsky
Article publié Time series clustering in causal inference
Time series clustering in causal inference

Clustering algorithms in machine learning are important unsupervised learning algorithms that can divide the original data into groups with similar observations. By using these groups, you can analyze the market for a specific cluster, search for the most stable clusters using new data, and make causal inferences. The article proposes an original method for time series clustering in Python.

3
Maxim Dmitrievsky
Article publié Propensity score in causal inference
Propensity score in causal inference

The article examines the topic of matching in causal inference. Matching is used to compare similar observations in a data set. This is necessary to correctly determine causal effects and get rid of bias. The author explains how this helps in building trading systems based on machine learning, which become more stable on new data they were not trained on. The propensity score plays a central role and is widely used in causal inference.

3
Maxim Dmitrievsky
Code publié ONNX Trader
Пример бота со встроенной моделью машинного обучения, которая обучена на питоне и сохранена в формат ONNX.
3 526
Maxim Dmitrievsky
Article publié Causal inference in time series classification problems
Causal inference in time series classification problems

In this article, we will look at the theory of causal inference using machine learning, as well as the custom approach implementation in Python. Causal inference and causal thinking have their roots in philosophy and psychology and play an important role in our understanding of reality.

7
Maxim Dmitrievsky
Article publié Cross-validation and basics of causal inference in CatBoost models, export to ONNX format
Cross-validation and basics of causal inference in CatBoost models, export to ONNX format

The article proposes the method of creating bots using machine learning.

5
Maxim Dmitrievsky
Sujet ajouté Questions sur la langue SI
void quicksort( double *a, int *idx, int l, int u) {    int i, m, idx_temp;    double a_temp;    if (l >= u)      return ;   m = l;    for (i=l+ 1 ; i<=u; i++)
Maxim Dmitrievsky
Sujet ajouté Interpolation, approximation et autres (paquet alglib)
J'ai besoin d'interpoler une fonction avec des paramètres arbitraires, j'ai donc choisi les splines. This subroutine builds cubic spline interpolant. INPUT PARAMETERS:     
Maxim Dmitrievsky
Sujet ajouté Analysez les caractéristiques STATISTIQUES importantes du modèle et choisissez une méthode de trading sur ce modèle.
Disons que nous avons un morceau d'un tableau. Nous devons trouver (sur l'histoire) la meilleure façon d'ouvrir des marchés sur ce sujet. Où acheter, où vendre, où acheter davantage, où fermer, etc. Mais nous devons tenir compte du fait que les
Maxim Dmitrievsky
Sujet ajouté Récupération d'un flux de prix via WebSocket en C#.
Bonjour, chers Messieurs. Intéressé à recevoir des cotations de différentes sources (y compris la bourse LMAX). Étant donné que différents courtiers sont connectés à différents ECN, fournisseurs de liquidités, il est préférable d'obtenir des
Maxim Dmitrievsky
Sujet ajouté L'arbitrage de change, est-ce que cela vaut la peine de s'y intéresser ?
Je me demande si quelqu'un a rencontré des cotations décalées de différents courtiers sur FORTS ? Est-ce que cela vaut la peine de creuser dans cette direction, ou bien tout est clair depuis longtemps et il n'y a pas besoin de jouer autour ? :) Y
12