Статьи по программированию на языках MQL4 и MQL5

icon

Изучайте язык программирования торговых стратегий MQL5 по опубликованным здесь статьям, большая часть которых написана вами - членами сообщества. Все статьи разделены на категории для быстрого поиска ответа по тому или иному аспекту программирования: "Интеграция", "Тестер", "Торговые стратегии" и многое другое.

Следите за новыми публикациями и участвуйте в их обсуждении на форуме!

Новая статья
последние | лучшие
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 12): Полином Ньютона

Возможности Мастера MQL5, которые вам нужно знать (Часть 12): Полином Ньютона

Полином Ньютона, который создает квадратные уравнения из набора нескольких точек, представляет собой архаичный, но интересный подход к рассмотрению временных рядов. В этой статье мы попытаемся изучить, какие аспекты этого подхода могут быть полезны трейдерам, а также устранить его ограничения.
preview
Как заработать, выполняя заказы трейдеров в сервисе "Фриланс"

Как заработать, выполняя заказы трейдеров в сервисе "Фриланс"

MQL5 Фриланс - это онлайн-сервис, где разработчики за денежное вознаграждение пишут для трейдеров-заказчиков торговые приложения. Сервис успешно функционирует с 2010 года: на данный момент выполнено более 100 000 работ общей стоимостью в $7 млн. Как видим, деньги здесь крутятся вполне приличные.
preview
Визуализации сделок на графике (Часть 2): Графическая отрисовка информации

Визуализации сделок на графике (Часть 2): Графическая отрисовка информации

Пишем с нуля скрипт, который сделает удобным выгрузку принт-скринов сделок для анализа торговых входов. На одном графике будет удобно отображаться вся необходимая информация по отдельной сделке, с возможностью прорисовывания разных тайм-фреймов.
preview
Разрабатываем мультивалютный советник (Часть 13): Автоматизация второго этапа — отбор в группы

Разрабатываем мультивалютный советник (Часть 13): Автоматизация второго этапа — отбор в группы

Первый этап автоматизированного процесса оптимизации у нас уже реализован. Для разных символов и таймфреймов мы проводим оптимизацию по нескольким критериям и сохраняем информацию о результатах каждого прохода в базе данных. Теперь займёмся отбором лучших групп наборов параметров из найденных на первом этапе.
preview
Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных

Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных

При работе с временными рядами мы всегда используем исходные данные в их исторической последовательности. Но является ли это оптимальным вариантом? Существует мнение, что изменение последовательности исходных данных позволит повысить эффективность обучаемых моделей. В данной статье я предлагаю вам познакомиться с одним из таких методов.
preview
Как не утонуть в торговой истории и просматривать сделки прямо на графике

Как не утонуть в торговой истории и просматривать сделки прямо на графике

В статье создадим простой инструмент для удобного просмотра позиций и сделок прямо на графике с навигацией клавишами. Это позволит трейдерам визуально изучать отдельные сделки и получать всю информацию о результатах торговли прямо по месту.
preview
Машинное обучение и Data Science (Часть 19): Совершенствуем AI-модели с помощью AdaBoost

Машинное обучение и Data Science (Часть 19): Совершенствуем AI-модели с помощью AdaBoost

Алгоритм AdaBoost используется для повышения производительности моделей искусственного интеллекта. AdaBoost (Adaptive Boosting, адаптивный бустинг) представляет собой сложную методику ансамблевого обучения, которая легко объединяет слабых учащихся, повышая их коллективную способность прогнозирования.
preview
Элементы корреляционного анализа в MQL5: Критерий независимости хи-квадрат Пирсона и корреляционное отношение

Элементы корреляционного анализа в MQL5: Критерий независимости хи-квадрат Пирсона и корреляционное отношение

В статье рассматриваются классические инструменты корреляционного анализа. Даются краткие теоретические основы, а также практическая реализация критерия независимости хи-квадрат Пирсона и коэффициента корреляционного отношения.
preview
Наиболее известные модификации алгоритма искусственного кооперативного поиска (Artificial Cooperative Search, ACSm)

Наиболее известные модификации алгоритма искусственного кооперативного поиска (Artificial Cooperative Search, ACSm)

В данной статье рассмотрим эволюцию алгоритма ACS: три модификации в направлении улучшения характеристик сходимости и результативности алгоритма. Трансформация одного из ведущих алгоритмов оптимизации. От модификаций матриц до революционных подходов к формированию популяций.
preview
Введение в MQL5 (Часть 3): Изучаем основные элементы MQL5

Введение в MQL5 (Часть 3): Изучаем основные элементы MQL5

В этой статье мы продолжаем изучать основы программирования на MQL5. Мы рассмотрим массивы, пользовательские функции, препроцессоры и обработку событий. Для наглядности каждый шаг всех объяснений будет сопровождаться кодом. Эта серия статей закладывает основу для изучения MQL5, уделяя особое внимание объяснению каждой строки кода.
preview
Разработка и тестирование торговых систем на основе Канала Кельтнера

Разработка и тестирование торговых систем на основе Канала Кельтнера

В этой статье мы рассмотрим торговые системы, использующие очень важную концепцию финансового рынка — волатильность. Мы изучим торговую систему, основанную на канала Кельтнера (Keltner Channel), включая ее реализацию в коде и тестирование на различных активах.
preview
Нейросети — это просто (Часть 93): Адаптивное прогнозирование в частотной и временной областях (Окончание)

Нейросети — это просто (Часть 93): Адаптивное прогнозирование в частотной и временной областях (Окончание)

В данной статье мы продолжаем реализацию подходов ATFNet — модели, которая адаптивно объединяет результаты 2 блоков (частотного и временного) прогнозирования временных рядов
preview
Алгоритм искусственного кооперативного поиска (Artificial Cooperative Search, ACS)

Алгоритм искусственного кооперативного поиска (Artificial Cooperative Search, ACS)

Представляем вам алгоритм Artificial Cooperative Search (ACS). Этот инновационный метод использует бинарную матрицу и несколько динамичных популяций, основанных на мутуалистических отношениях и кооперации, для быстрого и точного нахождения оптимальных решений. Уникальный подход ACS к "хищникам" и "жертвам" позволяет добиваться отличных результатов в задачах численной оптимизации.
preview
Реализация обобщенного показателя Херста и теста коэффициента дисперсии в MQL5

Реализация обобщенного показателя Херста и теста коэффициента дисперсии в MQL5

В этой статье мы рассмторим, как можно использовать обобщенный показатель Херста (Generalized Hurst Exponent) и тест коэффициента дисперсии (Variance Ratio) для анализа поведения ценовых рядов в MQL5.
preview
Машинное обучение и Data Science (Часть 18): Сравниваем эффективность TruncatedSVD и NMF в работе со сложными рыночными данными

Машинное обучение и Data Science (Часть 18): Сравниваем эффективность TruncatedSVD и NMF в работе со сложными рыночными данными

Усеченное сингулярное разложение (TruncatedSVD) и неотрицательная матричная факторизация (NMF) представляют собой методы уменьшения размерности. Оба метода могут быть весьма полезными при работе с торговыми стратегиями, имеющими в своей основе анализ данных. В этой статье мы рассмотрим их применимость к обработке сложных рыночных данных — их возможности по уменьшению размерности для оптимизации количественного анализа на финансовых рынках.
preview
Введение в MQL5 (Часть 2): Предопределенные переменные, общие функции и операторы потока управления

Введение в MQL5 (Часть 2): Предопределенные переменные, общие функции и операторы потока управления

В этой статье мы продолжаем знакомиться с языком программирования MQL5. Данная серия статей — не просто учебный материал пособия, это двери в мир программирования. Что делает их особенными? Я постарался в объяснениях сохранять простоту изложения, чтобы сделать сложные концепции доступными для всех. При всей доступности материала, для наилучшего результата вам нужно активно воспроизводить все, о чем мы будем говорить. Только в этом случае вы получите максимальную выгоду от данных статей.
preview
Нейросети — это просто (Часть 92): Адаптивное прогнозирование в частотной и временной областях

Нейросети — это просто (Часть 92): Адаптивное прогнозирование в частотной и временной областях

Авторы метода FreDF экспериментально подтвердили преимущество комбинированного прогнозирования в частотной и временной областях. Однако применение весового гиперпараметра не является оптимальным для нестационарных временных рядов. В данной статье я предлагаю познакомиться с методом адаптивного сочетания прогнозов в частотной и временной областях.
preview
Визуализации сделок на графике (Часть 1): Выбор периода для анализа

Визуализации сделок на графике (Часть 1): Выбор периода для анализа

Пишем с нуля скрипт, который сделает удобным выгрузку принт-скринов сделок для анализа торговых входов. На одном графике будет удобно отображаться вся необходимая информация по отдельной сделке с возможностью прорисовывания разных таймфреймов.
preview
Разработка робота на Python и MQL5 (Часть 2): Выбор модели, создание и обучение, кастомный тестер Python

Разработка робота на Python и MQL5 (Часть 2): Выбор модели, создание и обучение, кастомный тестер Python

Продолжаем цикл статей по созданию торгового робота на Python и MQL5. Сегодня решим задачу выбора и обучения модели, ее тестирования, внедрения кросс-валидации, поиска по сетке, а также задачу ансамблирования моделей.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 11): Числовые стены

Возможности Мастера MQL5, которые вам нужно знать (Часть 11): Числовые стены

Числовые стены (Number Walls) — это вариант регистра сдвига с линейной обратной связью (Linear Shift Back Registers), который предварительно оценивает последовательности на предмет предсказуемости путем проверки на сходимость. Мы посмотрим, как эти идеи могут быть использованы в MQL5.
preview
Разрабатываем мультивалютный советник (Часть 12): Риск-менеджер как для проп-трейдинговых компаний

Разрабатываем мультивалютный советник (Часть 12): Риск-менеджер как для проп-трейдинговых компаний

В разрабатываемом советнике у нас уже заложен определённый механизм контроля просадки. Но он имеет вероятностную природу, так как основывается на результатах тестирования на исторических ценовых данных. Поэтому просадка, хотя и с небольшой вероятностью, может иногда превышать максимальные ожидаемые значения. Попробуем добавить механизм, обеспечивающий гарантированное соблюдение заданного уровня просадки.
preview
Алгоритм кодового замка (Сode Lock Algorithm, CLA)

Алгоритм кодового замка (Сode Lock Algorithm, CLA)

В этой статье мы переосмыслим кодовые замки, превращая их из механизмов защиты в инструменты для решения сложных задач оптимизации. Откройте для себя мир кодовых замков, не как простых устройств безопасности, но как вдохновения для нового подхода к оптимизации. Мы создадим целую популяцию "замков", где каждый замок представляет собой уникальное решение задачи. Затем мы разработаем алгоритм, который будет "вскрывать" эти замки и находить оптимальные решения в самых разных областях, от машинного обучения до разработки торговых систем.
preview
Нейросети — это просто (Часть 91): Прогнозирование в частотной области (FreDF)

Нейросети — это просто (Часть 91): Прогнозирование в частотной области (FreDF)

Мы продолжаем рассмотрение темы анализ и прогнозирования временных рядов в частотной области. И в данной статье мы познакомимся с новым методом прогнозирования в частотной области, который может быть добавлен к многим, изученным нами ранее, алгоритмам.
preview
Создаем простой мультивалютный советник с использованием MQL5 (Часть 6): Два индикатора RSI пересекают линии друг друга

Создаем простой мультивалютный советник с использованием MQL5 (Часть 6): Два индикатора RSI пересекают линии друг друга

Под мультивалютным советником в этой статье понимается советник, или торговый робот, который использует два индикатора RSI с пересекающимися линиями - быстрый RSI, который пересекается с медленным.
preview
Разработка и тестирование торговых систем Aroon

Разработка и тестирование торговых систем Aroon

В этой статье мы узнаем, как построить торговую систему Aroon, изучив основы индикаторов и необходимые шаги для создания торговой системы на основе индикатора Aroon. После создания этой торговой системы мы проверим, может ли она быть прибыльной или требует дополнительной оптимизации.
preview
Разрабатываем мультивалютный советник (Часть 11): Начало автоматизации процесса оптимизации

Разрабатываем мультивалютный советник (Часть 11): Начало автоматизации процесса оптимизации

Для получения хорошего советника нам надо подобрать для него множество хороших наборов параметров экземпляров торговых стратегий. Это можно делать вручную, запуская оптимизацию на разных символах, и затем отбирая лучшие результаты. Но лучше поручить эту работу программе и заняться более продуктивной деятельностью.
preview
Как сделать любой тип Trailing Stop и подключить к советнику

Как сделать любой тип Trailing Stop и подключить к советнику

В статье рассмотрим классы для удобного создания различных трейлингов. Научимся подключать трейлинг-стоп к любому советнику.
preview
Алгоритм кометного следа (Comet Tail Algorithm, CTA)

Алгоритм кометного следа (Comet Tail Algorithm, CTA)

В данной статье мы рассмотрим новый авторский алгоритм оптимизации CTA (Comet Tail Algorithm), который черпает вдохновение из уникальных космических объектов - комет и их впечатляющих хвостов, формирующихся при приближении к Солнцу. Данный алгоритм основан на концепции движения комет и их хвостов, и предназначен для поиска оптимальных решений в задачах оптимизации.
preview
Нейросети — это просто (Часть 90): Частотная интерполяция временных рядов (FITS)

Нейросети — это просто (Часть 90): Частотная интерполяция временных рядов (FITS)

При изучении метода FEDformer мы приоткрыли дверь в частотную область представления временного ряда. В новой статье мы продолжим начатую тему. И рассмотрим метод, позволяющий не только проводить анализ, но и прогнозировать последующие состояния в частной области.
preview
Прогнозирование на основе глубокого обучения и открытие ордеров с помощью пакета MetaTrader 5 python и файла модели ONNX

Прогнозирование на основе глубокого обучения и открытие ордеров с помощью пакета MetaTrader 5 python и файла модели ONNX

Проект предполагает использование Python для прогнозирования на финансовых рынках на основе глубокого обучения. Мы изучим тонкости тестирования производительности модели с использованием таких ключевых показателей, как средняя абсолютная ошибка (MAE), средняя квадратичная ошибка (MSE) и R-квадрат (R2), а также научимся объединять это всё в исполняемом файле. Мы также создадим файл модели ONNX и советник.
preview
Модифицированный советник Grid-Hedge в MQL5 (Часть II): Создание простого сеточного советника

Модифицированный советник Grid-Hedge в MQL5 (Часть II): Создание простого сеточного советника

В статье рассматривается классическая сеточная стратегия, подробно описана ее автоматизация с помощью советника на MQL5 и проанализированы первоначальные результаты тестирования на истории. Также подчеркивается необходимость в долгом удержании позиций и рассматривается возможность оптимизации ключевых параметров (таких как расстояние, тейк-профит и размеры лотов) в будущих частях. Целью этой серии статей является повышение эффективности торговой стратегии и ее адаптируемости к различным рыночным условиям.
preview
Риск-менеджер для алгоритмической торговли

Риск-менеджер для алгоритмической торговли

Целями данной статьи являются: доказать обязательность применения риск-менеджера, адаптация принципов контролируемого риска при торговле алгоритмически в отдельном классе, чтобы каждый смог самостоятельно убедиться в эффективности подхода нормирования риска при внутридневной торговле и инвестировании на финансовых рынках. В данной статье мы подробно раскроем написание класса риск-менеджера для алгоритмической торговли в продолжение к предыдущей статье по написанию риск-менеджера для ручной торговли.
preview
Разрабатываем мультивалютный советник (Часть 10): Создание объектов из строки

Разрабатываем мультивалютный советник (Часть 10): Создание объектов из строки

План разработки советника предусматривает несколько этапов с сохранением промежуточных результатов в базе данных. Заново достать их оттуда можно только в виде строк или чисел, а не объектов. Поэтому нам нужен способ воссоздания в советнике нужных объектов из строк, прочитанных из базы данных.
preview
Алгоритм эволюции панциря черепахи (Turtle Shell Evolution Algorithm, TSEA)

Алгоритм эволюции панциря черепахи (Turtle Shell Evolution Algorithm, TSEA)

Уникальный алгоритм оптимизации, вдохновленный эволюцией панциря черепахи. Алгоритм TSEA эмулирует постепенное формирование ороговевших участков кожи, которые представляют собой оптимальные решения задачи. Лучшие решения становятся более "твердыми" и располагаются ближе к внешней поверхности, в то время как менее удачные решения остаются "мягкими" и находятся внутри. Алгоритм использует кластеризацию решений по качеству и расстоянию, позволяя сохранять менее успешные варианты и обеспечивая гибкость и адаптивность.
preview
Разметка данных в анализе временных рядов (Часть 6):Применение и тестирование советника с помощью ONNX

Разметка данных в анализе временных рядов (Часть 6):Применение и тестирование советника с помощью ONNX

В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!
preview
Нейросети — это просто (Часть 89): Трансформер частотного разложения сигнала (FEDformer)

Нейросети — это просто (Часть 89): Трансформер частотного разложения сигнала (FEDformer)

Все рассмотренные нами ранее модели анализируют состояние окружающей среды в виде временной последовательности. Однако, тот же временной ряд можно представить и в виде частотных характеристик. В данной статье я предлагаю вам познакомиться с алгоритмом, который использует частотные характеристики временной последовательности для прогнозирования будущих состояний.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 10): Нетрадиционная RBM

Возможности Мастера MQL5, которые вам нужно знать (Часть 10): Нетрадиционная RBM

Ограниченные машины Больцмана (Restrictive Boltzmann Machines, RBM) представляют собой на базовом уровне двухслойную нейронную сеть, способную выполнять неконтролируемую классификацию посредством уменьшения размерности. Мы используем ее основные принципы и посмотрим что случится, если мы перепроектируем и обучим ее нестандартно. Сможем ли мы получить полезный фильтр сигналов?
preview
Критерий однородности Смирнова как индикатор нестационарности временного ряда

Критерий однородности Смирнова как индикатор нестационарности временного ряда

В статье рассматривается один из самых известных непараметрических критериев однородности — критерий Смирнова. Анализируются как модельные данные, так и реальные котировки. Приводится пример построения индикатора нестационарности (iSmirnovDistance).
preview
Алгоритмическая торговля с MetaTrader 5 и R для начинающих

Алгоритмическая торговля с MetaTrader 5 и R для начинающих

В статье мы объединим финансовый анализ с алгоритмической торговлей, а также посмотрим, как можно подружить R и MetaTrader 5. Эта статья — руководство по объединению аналитической гибкости R с огромными торговыми возможностями MetaTrader 5.
preview
Разработка MQTT-клиента для MetaTrader 5: методология TDD (Часть 5)

Разработка MQTT-клиента для MetaTrader 5: методология TDD (Часть 5)

Статья является пятой частью серии, описывающей этапы разработки нативного MQL5-клиента для протокола MQTT 5.0. В этой части мы опишем структуру пакетов PUBLISH - как мы устанавливаем их флаги публикации (Publish Flags), кодируем строки названий тем и устанавливаем идентификаторы пакетов, когда это необходимо.