

MQL5 中的交易操作 - 很简单
几乎所有的交易者都是为了赚钱而进入市场,但也有一些交易者却是享受交易过程的本身。然而,并不是只有手动交易才能给您兴奋的体验。自动化交易系统开发也可以让您欲罢不能。创建一个交易机器人,可以像读一本出色的悬疑小说一样有趣。


我们如何开发MetaTrader 信号服务和群组交易
我们持续加强信号服务,完善机制,添加新的功能并修复缺陷。2012年的MetaTrader信号服务和当前的MetaTrader信号服务就像两个完全不同的服务。目前,我们正在实施 虚拟主机云服 务,它由一个服务器网络组成用来支持特定版本的MetaTrader客户端。若要从MetaTrader客户端以最小的网络延迟租用程序端虚拟副本,直接 到达他们交易商的交易服务器,交易人将只需完成5个步骤。


EA交易的自我优化: 进化与遗传算法
本文涵盖的内容是提出了进化算法主要原则,以及它们的特点和多样性。我们将使用一个简单的EA交易作为实例来做实验,来展示如何通过优化使我们的交易系统获益,我们将探讨在软件程序中实现遗传、进化以及其它类型的优化,并且在优化交易系统的预测器集合与参数时提供示例程序。


在 MQL5 中寻找趋势的几种方法
任何一位交易人都有可能面临准确把握趋势的好机会。也许这就是每个人都想找到的万能圣杯。在本文中,我们将讨论几个判断趋势的方法。更准确地说,是如何通过 MQL5 方法,制定几个经典的趋势判断程序。


跨平台的EA交易: 信号
本文讨论了 CSignal 和 CSignals 类,它们将用于创建跨平台的EA交易。它检验了MQL4和MQL5的区别,看它们在评估交易信号时需要怎样特别的数据,这样来确保写出的代码可以兼容两种编译器。


通用智能交易系统:自定义追踪止损(第六章)
通用智能交易系统的第六章介绍追踪止损功能的用法。本文将指导你如何使用通用规则创建一个自己的追踪止损模型,以及如何将其添加到交易引擎中来实现自动管理持仓头寸的功能。


神经网络: 智能交易系统自我优化
是否有可能开发一款能够根据代码命令, 定期优化开仓和平仓条件的智能交易系统?如果我们以模块化的形式实现一个神经网络 (多层感知器) 来分析历史并提供策略, 会发生什么?我们可以做到 EA 每月(每周, 每天或每小时) 进行神经网络优化, 然后继续其工作。因此, 我们可以开发一款自我优化 EA。


交易者生活窍门: 利用 defines (#define) 融合 ForEach
对于那些仍然使用 MQL4 编程且不想切换到 MQL5 的人来说, 本文是一个过渡步骤。 我们继续寻找以 MQL4 风格编写代码的机会。 这一次, 我们将研究 #define 预处理器的宏替代。


神经网络:从理论到实践
现在,每一位交易者肯定听说过神经网络并知道使用它们有多酷。大多数人相信那些能够使用神经网络的人是某种超人。在本文中,我将尝试向您解释神经网络架构,描述其应用并提供几个实践例子。


以横盘和趋势行情为例强化策略测试器的指标优化
检测行情是否处于横盘对于许多策略来说是至关必要的。我们使用高知名度的 ADX 来展示如何利用策略测试器, 不但可以根据我们的特殊目的来优化指标, 而且我们也能判断指标是否符合我们的需要, 得到横盘和趋势行情的均值, 这对于判断行情的止损和目标是十分重要的。


面向初学者的 MQL4 语言。技术指标和内置函数
这是“面向初学者的 MQL4 语言”系列的第三篇文章。现在我们将学习使用内置函数和用于技术指标的函数。后者对于以后开发你自己的 Expert Advisor 和指标至关重要。另外,我们将通过一个简答的例子,解释如何追踪进入市场的交易信号,以及如何正确使用指标。在文章的末尾,你将学到一些关于语言本身的新鲜有趣的内容。


如何创建自己的追踪止损
交易人员的基本原则 - 让利润增长,截停损失!本文讨论遵循该原则的其中的一个基本技巧 - 在增加持仓利润后移动保护性止损水平(止损水平),追踪止损水平。我们将给出用于在SAR和NRTR指标上追踪止损的类的分步创建过程。每个人都可以将该追踪止损插入他们的EA交易,或是在帐户中单独使用以控制持仓。


以MQL5 编写的EA 交易程序的测试与优化指南
本文解释识别和解决代码错误的步进式过程以及EA交易程序输入参数的测试与优化的步骤。您将了解如何使用 MetaTrader 5 客户端的策略测试程序为您的 EA 交易程序寻找最佳交易品种和一组输入参数。


带有图形界面的通用通道
所有通道指标显示为三条线, 包括中心, 顶部和底部线。中心线的绘图原理与移动平均线相似, 而移动均线指标主要用于绘制通道。顶部线和底部线的位置距中心线距离相等。距离的确定可以按照点为单位, 作为价格百分比 (包络指标), 使用标准偏差值 (布林带) 或 ATR 值 (Keltner 通道)。


如何为 MetaTrader 市场创建一款非标准图表的指标
通过离线图表, 以 MQL4 编程, 以及合理的意愿, 您可以得到各种图表类型: "点线图", "Renko", "Kagi", "范围柱线", 等量图表, 等等。在本文中, 我们将展示如何在不使用 DLL 的情况下来实现它, 而且这种 "二并一" 的指标可以发布, 并从市场上购买。


解读经典和隐藏背离的新途径。 第二部分
本文针对各种指标的常规背离及其成效进行了严格查验。 此外,它还包含用于提升分析准确性的过滤选项,并提供非标准解决方案的功能描述。 结果就是,我们将创建一个解决技术任务的新工具。


经验模态分解法介绍
本文旨在让读者熟悉经验模态分解 (EMD) 法。它是希尔伯特-黄 (Hilbert-Huang) 变换的基础部分,用于分析非静态和非线性过程产生的数据。本文还介绍此方法的一种可能软件实施,并简短地介绍有关其特性的考虑因素,并提供几个简单的运用例子。


运用人工智能实现的 Thomas DeMark 次序 (TD SEQUENTIAL)
在本文中, 我将告诉您如何把一个非常著名的策略与神经网络合并以便成功交易。这就是运用人工智能系统实现的 Thomas DeMark 次序策略。仅应用了策略的第一部分, 使用设置和交汇信号。


为什么说 MQL5 应用商店是销售交易策略与技术指标的最佳去处
MQL5.community 应用商店为 EA 交易开发人员提供了一个由成千上万潜在客户构成的、已经成型的市场。这里是销售交易机器人和技术指标的最佳去处!


MQL5 向导:无需编程即可创建 EA 交易程序
您想试试不用浪费时间来编程的交易策略吗?利用 MQL5 向导,您只需要选择交易信号的类型,添加追踪仓位和资金管理模块,您的工作就完成了!创建自己的模块实现,或是通过“任务”服务订购 - 再将您的新模块合并到现有模块。

如何在自由职业者服务中通过完成交易员的订单来赚钱
MQL5 自由职业者是一项在线服务,开发人员可以通过这项服务为交易员客户创建交易应用程序而获得收入。该服务自 2010 年起成功运营,迄今已完成超过 10 万个项目,总价值达 700 万美元。我们可以看到,这里涉及到大量资金。


利用文斯 (Vince) 进行资金管理。 作为 MQL5 向导模块实现
本文基于拉尔夫·文斯 (Ralph Vince) 的 "资金管理中的数学"。 它所提供的经验和参数方法描述, 可用于查询交易手数的最优规模。 本文还介绍了基于这些方法实现 MQL5 向导的交易模块。


反向交易: 圣杯还是危险的假象
在这篇文章中,我们将会学习反向马丁格尔技术,并且将会了解是否值得使用它,以及它是否有助于提高您的交易策略。我们将会创建一个 EA 交易来在历史数据上运行, 检查哪个指标是最适合于反向交易技术的 。我们还将验证是否可以不使用任何指标,以独立的交易系统来使用它。另外,我们还将验证反向交易是否可以把一个亏损系统转变为盈利的系统。


编写"EA 交易"时,MQL5 标准交易类库的使用
本文阐述的是,在编写"EA 交易"的过程中,如何使用 MQL5 标准库交易类的主要功能,实现更改仓位与平仓、挂单的下达与删除,以及交易进行之前的预付款验证。我们还会演示可以如何使用交易类来获取订单与交易详情。


自动选择有 "钱途" 的信号
本文将致力于分析 MetaTrader 5 平台的交易信号, 从而能够在用户账户里自动执行交易操作。此外,文章还研究了工具的开发,它有助于从终端当中直接搜索潜在地有 "钱途" 的交易信号。

如何创建任意复杂度的图形面板
本文详细介绍了如何在 CAppDialog 类的基础上创建面板,以及如何在面板上增加控件。它描述了面板的结构和框架,显示了对象的继承关系。从这篇文章中,您还可以学习到事件是怎样处理的以及它们是怎样在独立的控件之间传递的。另外还有实例演示了如何编辑面板参数,例如大小和背景颜色。


模糊逻辑介绍
模糊逻辑扩展了我们的数理逻辑和集合论的界限。本文揭示了模糊逻辑的基本原理, 同时描述使用马丹尼型和关野型的两种推理系统。提供的例程将描述如何使用 MQL5 版本的模糊库来实现这两种类型的系统。


利用指数平滑法进行时间序列预测
本文旨在让读者熟悉用于时间序列短期预测的指数平滑模型,此外还会探讨预测结果优化与评估相关的各种问题,并提供若干脚本与指标示例。当您首次接触基于指数平滑模型的预测原则时,阅读本文定会有所收益。