Andrey Dik
Andrey Dik
4.4 (26)
  • Bilgiler
12+ yıl
deneyim
5
ürünler
87
demo sürümleri
15
işler
0
sinyaller
0
aboneler
I WILL CONSIDER PROPOSALS FOR THE PUBLICATION OF A BOOK (TEXTBOOK) ON OPTIMIZATION ALGORITHMS.

A group for communication on optimization and free product testing://t.me/+vazsAAcney4zYmZi
Attention! My Telegram doppelgangers have appeared, my real nickname is @JQS_aka_Joo

My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

All my publications: https://www.mql5.com/en/users/joo/publications

I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.

I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller

Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
Andrey Dik
"Population optimization algorithms: Bacterial Foraging Optimization - Genetic Algorithm (BFO-GA)" makalesini yayınladı
Population optimization algorithms: Bacterial Foraging Optimization - Genetic Algorithm (BFO-GA)

The article presents a new approach to solving optimization problems by combining ideas from bacterial foraging optimization (BFO) algorithms and techniques used in the genetic algorithm (GA) into a hybrid BFO-GA algorithm. It uses bacterial swarming to globally search for an optimal solution and genetic operators to refine local optima. Unlike the original BFO, bacteria can now mutate and inherit genes.

4
Andrey Dik
"Population optimization algorithms: Evolution Strategies, (μ,λ)-ES and (μ+λ)-ES" makalesini yayınladı
Population optimization algorithms: Evolution Strategies, (μ,λ)-ES and (μ+λ)-ES

The article considers a group of optimization algorithms known as Evolution Strategies (ES). They are among the very first population algorithms to use evolutionary principles for finding optimal solutions. We will implement changes to the conventional ES variants and revise the test function and test stand methodology for the algorithms.

4
Andrey Dik
"Population optimization algorithms: Changing shape, shifting probability distributions and testing on Smart Cephalopod (SC)" makalesini yayınladı
Population optimization algorithms: Changing shape, shifting probability distributions and testing on Smart Cephalopod (SC)

The article examines the impact of changing the shape of probability distributions on the performance of optimization algorithms. We will conduct experiments using the Smart Cephalopod (SC) test algorithm to evaluate the efficiency of various probability distributions in the context of optimization problems.

4
Andrey Dik
"Population optimization algorithms: Simulated Isotropic Annealing (SIA) algorithm. Part II" makalesini yayınladı
Population optimization algorithms: Simulated Isotropic Annealing (SIA) algorithm. Part II

The first part was devoted to the well-known and popular algorithm - simulated annealing. We have thoroughly considered its pros and cons. The second part of the article is devoted to the radical transformation of the algorithm, which turns it into a new optimization algorithm - Simulated Isotropic Annealing (SIA).

6
Andrey Dik
"Population optimization algorithms: Simulated Annealing (SA) algorithm. Part I" makalesini yayınladı
Population optimization algorithms: Simulated Annealing (SA) algorithm. Part I

The Simulated Annealing algorithm is a metaheuristic inspired by the metal annealing process. In the article, we will conduct a thorough analysis of the algorithm and debunk a number of common beliefs and myths surrounding this widely known optimization method. The second part of the article will consider the custom Simulated Isotropic Annealing (SIA) algorithm.

5
Andrey Dik
"Population optimization algorithms: Nelder–Mead, or simplex search (NM) method" makalesini yayınladı
Population optimization algorithms: Nelder–Mead, or simplex search (NM) method

The article presents a complete exploration of the Nelder-Mead method, explaining how the simplex (function parameter space) is modified and rearranged at each iteration to achieve an optimal solution, and describes how the method can be improved.

4
Andrey Dik
"Population optimization algorithms: Differential Evolution (DE)" makalesini yayınladı
Population optimization algorithms: Differential Evolution (DE)

In this article, we will consider the algorithm that demonstrates the most controversial results of all those discussed previously - the differential evolution (DE) algorithm.

5
Andrey Dik
"Population optimization algorithms: Spiral Dynamics Optimization (SDO) algorithm" makalesini yayınladı
Population optimization algorithms: Spiral Dynamics Optimization (SDO) algorithm

The article presents an optimization algorithm based on the patterns of constructing spiral trajectories in nature, such as mollusk shells - the spiral dynamics optimization (SDO) algorithm. I have thoroughly revised and modified the algorithm proposed by the authors. The article will consider the necessity of these changes.

6
Andrey Dik
"Population optimization algorithms: Intelligent Water Drops (IWD) algorithm" makalesini yayınladı
Population optimization algorithms: Intelligent Water Drops (IWD) algorithm

The article considers an interesting algorithm derived from inanimate nature - intelligent water drops (IWD) simulating the process of river bed formation. The ideas of this algorithm made it possible to significantly improve the previous leader of the rating - SDS. As usual, the new leader (modified SDSm) can be found in the attachment.

5
Andrey Dik
Andrey Dik
All my indicators published in the Market until today are now free!
Andrey Dik
"Population optimization algorithms: Charged System Search (CSS) algorithm" makalesini yayınladı
Population optimization algorithms: Charged System Search (CSS) algorithm

In this article, we will consider another optimization algorithm inspired by inanimate nature - Charged System Search (CSS) algorithm. The purpose of this article is to present a new optimization algorithm based on the principles of physics and mechanics.

4
Andrey Dik
"Population optimization algorithms: Stochastic Diffusion Search (SDS)" makalesini yayınladı
Population optimization algorithms: Stochastic Diffusion Search (SDS)

The article discusses Stochastic Diffusion Search (SDS), which is a very powerful and efficient optimization algorithm based on the principles of random walk. The algorithm allows finding optimal solutions in complex multidimensional spaces, while featuring a high speed of convergence and the ability to avoid local extrema.

5
Andrey Dik
"Population optimization algorithms: Mind Evolutionary Computation (MEC) algorithm" makalesini yayınladı
Population optimization algorithms: Mind Evolutionary Computation (MEC) algorithm

The article considers the algorithm of the MEC family called the simple mind evolutionary computation algorithm (Simple MEC, SMEC). The algorithm is distinguished by the beauty of its idea and ease of implementation.

4
Andrey Dik
"Population optimization algorithms: Shuffled Frog-Leaping algorithm (SFL)" makalesini yayınladı
Population optimization algorithms: Shuffled Frog-Leaping algorithm (SFL)

The article presents a detailed description of the shuffled frog-leaping (SFL) algorithm and its capabilities in solving optimization problems. The SFL algorithm is inspired by the behavior of frogs in their natural environment and offers a new approach to function optimization. The SFL algorithm is an efficient and flexible tool capable of processing a variety of data types and achieving optimal solutions.

4
Andrey Dik
"Popülasyon optimizasyon algoritmaları: Elektromanyetizma benzeri algoritma (ElectroMagnetism-like algorithm, ЕМ)" makalesini yayınladı
Popülasyon optimizasyon algoritmaları: Elektromanyetizma benzeri algoritma (ElectroMagnetism-like algorithm, ЕМ)

Makale, elektromanyetizma benzeri algoritmanın (EM) ilkelerini, yöntemlerini ve çeşitli optimizasyon problemlerinde kullanım olanaklarını açıklamaktadır. EM algoritması, büyük miktarda veri ve çok boyutlu fonksiyonlarla çalışabilen verimli bir optimizasyon aracıdır.

Andrey Dik
"Popülasyon optimizasyon algoritmaları: Fidan dikimi ve büyütme (Saplings Sowing and Growing up, SSG)" makalesini yayınladı
Popülasyon optimizasyon algoritmaları: Fidan dikimi ve büyütme (Saplings Sowing and Growing up, SSG)

Fidan dikimi ve büyütme (SSG) algoritması, çok çeşitli koşullarda hayatta kalmak için olağanüstü yetenek gösteren gezegendeki en dirençli organizmalardan birinden esinlenmiştir.

Andrey Dik
"Popülasyon optimizasyon algoritmaları: Maymun algoritması (Monkey Algorithm, MA)" makalesini yayınladı
Popülasyon optimizasyon algoritmaları: Maymun algoritması (Monkey Algorithm, MA)

Bu makalede, maymun algoritması (MA) optimizasyon algoritmasını ele alacağız. Bu hayvanların zorlu engelleri aşma ve en ulaşılmaz ağaç tepelerine ulaşma yeteneği, MA algoritması fikrinin temelini oluşturmuştur.

Andrey Dik
"Popülasyon optimizasyon algoritmaları: Armoni arama (Harmony Search, HS)" makalesini yayınladı
Popülasyon optimizasyon algoritmaları: Armoni arama (Harmony Search, HS)

Bu makalede, mükemmel ses uyumunu bulma sürecinden esinlenen en güçlü optimizasyon algoritması olan armoni aramayı (HS) inceleyecek ve test edeceğiz. Peki şu anda sıralamamızda lider olan algoritma hangisi?

Andrey Dik
"Popülasyon optimizasyon algoritmaları: Yerçekimsel arama algoritması (Gravitational Search Algorithm, GSA)" makalesini yayınladı
Popülasyon optimizasyon algoritmaları: Yerçekimsel arama algoritması (Gravitational Search Algorithm, GSA)

GSA, cansız doğadan ilham alan bir popülasyon optimizasyon algoritmasıdır. Algoritmada uygulanan Newton'un yerçekimi yasası sayesinde, fiziksel cisimlerin etkileşimini modellemenin yüksek güvenilirliği, gezegen sistemlerinin ve galaktik kümelerin büyüleyici dansını gözlemlememize olanak tanır. Bu makalede, en ilginç ve orijinal optimizasyon algoritmalarından birini ele alacağız. Uzay nesnelerinin hareket simülatörü de sağlanmıştır.