Andrey Dik
Andrey Dik
4.4 (26)
  • Information
12+ years
experience
5
products
87
demo versions
15
jobs
0
signals
0
subscribers
I WILL CONSIDER PROPOSALS FOR THE PUBLICATION OF A BOOK (TEXTBOOK) ON OPTIMIZATION ALGORITHMS.

A group for communication on optimization and free product testing://t.me/+vazsAAcney4zYmZi
Attention! My Telegram doppelgangers have appeared, my real nickname is @JQS_aka_Joo

My github with optimization algorithms: https://github.com/JQSakaJoo/Population-optimization-algorithms-MQL5

All my publications: https://www.mql5.com/en/users/joo/publications

I have been developing systems based on machine learning technologies since 2007 and in the field of artificial
intelligence, optimization and forecasting.

I took an active part in the development of the MT5 platform, such as the introduction of support for universal parallel
computing on the GPU and CPU with OpenCL, testing and backtesting of distributed
computing in the LAN and cloud during optimization in MT5, my test functions are included in the standard delivery of the terminal.
⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
My Products:
https://www.mql5.com/en/users/joo/seller

Recommended Brokers:
https://rbfxdirect.com/ru/lk/?a=dnhp
Andrey Dik
Published article Бильярдный алгоритм оптимизации — Billiards Optimization Algorithm (BOA)
Бильярдный алгоритм оптимизации — Billiards Optimization Algorithm (BOA)

Метод BOA, вдохновленный классической игрой в бильярд, моделирует процесс поиска оптимальных решений, как игру с шарами, стремящимися попасть в лузы, олицетворяющие наилучшие результаты. В данной статье мы рассмотрим основы работы BOA, его математическую модель и эффективность в решении различных оптимизационных задач.

3
Andrey Dik
Published article Chaos Game Optimization (CGO)
Chaos Game Optimization (CGO)

The article presents a new metaheuristic algorithm, Chaos Game Optimization (CGO), which demonstrates a unique ability to maintain high efficiency when dealing with high-dimensional problems. Unlike most optimization algorithms, CGO not only does not lose, but sometimes even increases performance when scaling a problem, which is its key feature.

Andrey Dik
Published article Blood inheritance optimization (BIO)
Blood inheritance optimization (BIO)

I present to you my new population optimization algorithm - Blood Inheritance Optimization (BIO), inspired by the human blood group inheritance system. In this algorithm, each solution has its own "blood type" that determines the way it evolves. Just as in nature where a child's blood type is inherited according to specific rules, in BIO new solutions acquire their characteristics through a system of inheritance and mutations.

Andrey Dik
Published article Circle Search Algorithm (CSA)
Circle Search Algorithm (CSA)

The article presents a new metaheuristic optimization Circle Search Algorithm (CSA) based on the geometric properties of a circle. The algorithm uses the principle of moving points along tangents to find the optimal solution, combining the phases of global exploration and local exploitation.

Andrey Dik
Published article Royal Flush Optimization (RFO)
Royal Flush Optimization (RFO)

The original Royal Flush Optimization algorithm offers a new approach to solving optimization problems, replacing the classic binary coding of genetic algorithms with a sector-based approach inspired by poker principles. RFO demonstrates how simplifying basic principles can lead to an efficient and practical optimization method. The article presents a detailed analysis of the algorithm and test results.

Andrey Dik
Published article Dialectic Search (DA)
Dialectic Search (DA)

The article introduces the dialectical algorithm (DA), a new global optimization method inspired by the philosophical concept of dialectics. The algorithm exploits a unique division of the population into speculative and practical thinkers. Testing shows impressive performance of up to 98% on low-dimensional problems and overall efficiency of 57.95%. The article explains these metrics and presents a detailed description of the algorithm and the results of experiments on different types of functions.

Andrey Dik
Published article Time Evolution Travel Algorithm (TETA)
Time Evolution Travel Algorithm (TETA)

This is my own algorithm. The article presents the Time Evolution Travel Algorithm (TETA) inspired by the concept of parallel universes and time streams. The basic idea of the algorithm is that, although time travel in the conventional sense is impossible, we can choose a sequence of events that lead to different realities.

Andrey Dik
Published article Cyclic Parthenogenesis Algorithm (CPA)
Cyclic Parthenogenesis Algorithm (CPA)

The article considers a new population optimization algorithm - Cyclic Parthenogenesis Algorithm (CPA), inspired by the unique reproductive strategy of aphids. The algorithm combines two reproduction mechanisms — parthenogenesis and sexual reproduction — and also utilizes the colonial structure of the population with the possibility of migration between colonies. The key features of the algorithm are adaptive switching between different reproductive strategies and a system of information exchange between colonies through the flight mechanism.

Andrey Dik
Published article Functions for activating neurons during training: The key to fast convergence?
Functions for activating neurons during training: The key to fast convergence?

This article presents a study of the interaction of different activation functions with optimization algorithms in the context of neural network training. Particular attention is paid to the comparison of the classical ADAM and its population version when working with a wide range of activation functions, including the oscillating ACON and Snake functions. Using a minimalistic MLP (1-1-1) architecture and a single training example, the influence of activation functions on the optimization is isolated from other factors. The article proposes an approach to manage network weights through the boundaries of activation functions and a weight reflection mechanism, which allows avoiding problems with saturation and stagnation in training.

Andrey Dik
Published article Big Bang - Big Crunch (BBBC) algorithm
Big Bang - Big Crunch (BBBC) algorithm

The article presents the Big Bang - Big Crunch method, which has two key phases: cyclic generation of random points and their compression to the optimal solution. This approach combines exploration and refinement, allowing us to gradually find better solutions and open up new optimization opportunities.

Andrey Dik
Andrey Dik
⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️
Andrey Dik
Andrey Dik
🎉 New Year’s Offer! 🎉

Dive into a world of new possibilities with our unique product, the MT5 Optimization Booster! For just two weeks, you have the chance to not only test all its features and benefits for free but also tackle your global optimization challenges!

✨ What awaits you?

🚀 Full access to the product's functionality
🎁 Unique opportunities that will help you achieve more
Don't miss the chance to make this New Year special! Click on the link https://www.mql5.com/en/blogs/post/760467 and start your free trial today!

Hurry up! This offer is valid for a limited time! 🎊
Andrey Dik
Andrey Dik
🎉 Новогоднее предложение! 🎉

Погрузитесь в мир новых возможностей с нашим уникальным продуктом MT5 Optimization Booster! Только в течение двух недель у вас есть шанс бесплатно протестировать все его функции и преимущества!

✨ Что вас ждет?
- 🚀 Полный доступ к функционалу продукта
- 🎁 Уникальные возможности, которые помогут вам достигать большего


Не упустите возможность сделать этот Новый год особенным! Переходите по ссылке https://www.mql5.com/ru/blogs/post/760459 и начните свое бесплатное тестирование уже сегодня!

Поторопитесь! Акция действует ограниченное время! 🎊
Andrey Dik
Special New Year Offer: 2 Weeks of Free Trial! ( file attached) ⬇️ Get full access to MT5 Optimization Booster for 14 days absolutely free What you get during the trial period: ✅ Complete unlimited functionality of the Booster ✅ Unlimited number of optimizations What is MT5 Optimization Booster...
Andrey Dik
Специальное новогоднее предложение: 2 недели бесплатного тестирования Получите полный доступ к MT5 Optimization Booster на 14 дней совершенно бесплатно (файл в прикрепе...
Andrey Dik
Published article Black Hole Algorithm (BHA)
Black Hole Algorithm (BHA)

The Black Hole Algorithm (BHA) uses the principles of black hole gravity to optimize solutions. In this article, we will look at how BHA attracts the best solutions while avoiding local extremes, and why this algorithm has become a powerful tool for solving complex problems. Learn how simple ideas can lead to impressive results in the world of optimization.

Andrey Dik
Published article Artificial Tribe Algorithm (ATA)
Artificial Tribe Algorithm (ATA)

The article provides a detailed discussion of the key components and innovations of the ATA optimization algorithm, which is an evolutionary method with a unique dual behavior system that adapts depending on the situation. ATA combines individual and social learning while using crossover for explorations and migration to find solutions when stuck in local optima.

Andrey Dik
Published article Expert Advisor based on the universal MLP approximator
Expert Advisor based on the universal MLP approximator

The article presents a simple and accessible way to use a neural network in a trading EA that does not require deep knowledge of machine learning. The method eliminates the target function normalization, as well as overcomes "weight explosion" and "network stall" issues offering intuitive training and visual control of the results.

Andrey Dik
Published article Population ADAM (Adaptive Moment Estimation)
Population ADAM (Adaptive Moment Estimation)

The article presents the transformation of the well-known and popular ADAM gradient optimization method into a population algorithm and its modification with the introduction of hybrid individuals. The new approach allows creating agents that combine elements of successful decisions using probability distribution. The key innovation is the formation of hybrid population individuals that adaptively accumulate information from the most promising solutions, increasing the efficiency of search in complex multidimensional spaces.

Andrey Dik
Published article Arithmetic Optimization Algorithm (AOA): From AOA to SOA (Simple Optimization Algorithm)
Arithmetic Optimization Algorithm (AOA): From AOA to SOA (Simple Optimization Algorithm)

In this article, we present the Arithmetic Optimization Algorithm (AOA) based on simple arithmetic operations: addition, subtraction, multiplication and division. These basic mathematical operations serve as the foundation for finding optimal solutions to various problems.