有关MQL5策略测试的文章

icon

如何开发,编写和测试交易策略,如何找到最优的系统参数,以及如何分析结果?该 MetaTrader 平台为交易机器人开发者提供了丰富的功能,可以快速、准确地测试交易思路。阅读这些文章,了解如何测试多币种机器人,以及如何利用 MQL5 云网络 达到优化目的。

建议自动交易系统的开发者,在策略测试器中,先从测试基本面即时报价算法开始。

添加一个新的文章
最近 | 最佳
preview
开发回放系统 — 市场模拟(第 14 部分):模拟器的诞生(IV)

开发回放系统 — 市场模拟(第 14 部分):模拟器的诞生(IV)

在本文中,我们将继续探讨模拟器开发的新阶段。 这次,我们会见到如何有效地创建随机游走类型的走势。 这种类型的走势非常引人入胜,因为它是构成资本市场上所发生一切的基础。 此外,我们将开始了解一些对于进行市场分析至关重要的概念。
preview
开发回放系统 — 市场模拟(第 13 部分):模拟器的诞生(III)

开发回放系统 — 市场模拟(第 13 部分):模拟器的诞生(III)

为了下一阶段的工作,我们将于此简化一些与操作相关的元素。 我还会解释如何让您把模拟器随机生成的内容可视化。
preview
MQL5 中的范畴论 (第 9 部分):幺半群(Monoid)— 动作

MQL5 中的范畴论 (第 9 部分):幺半群(Monoid)— 动作

本文是以 MQL5 实现范畴论系列的延续。 在这里,我们继续将“幺半群 — 动作”当为幺半群变换的一种手段,如上一篇文章所涵盖的内容,从而增加了应用。
preview
开发回放系统 — 市场模拟(第 12 部分):模拟器的诞生(II)

开发回放系统 — 市场模拟(第 12 部分):模拟器的诞生(II)

开发模拟器可能比看起来有趣得多。 今天,我们将朝着这个方向再走几步,因为事情变得越来越有趣。
preview
开发回放系统 — 市场模拟(第 11 部分):模拟器的诞生(I)

开发回放系统 — 市场模拟(第 11 部分):模拟器的诞生(I)

为了依据数据形成柱线,我们必须放弃回放,并开始研发一款模拟器。 我们将采用 1-分钟柱线,因为它们所需的难度最小。
开发回放系统 — 市场模拟(第 10 部分):仅用真实数据回放
开发回放系统 — 市场模拟(第 10 部分):仅用真实数据回放

开发回放系统 — 市场模拟(第 10 部分):仅用真实数据回放

在此,我们将查看如何在回放系统中使用更可靠的数据(交易跳价),而不必担心它是否被调整。
preview
开发回放系统 — 市场模拟(第 09 部分):自定义事件

开发回放系统 — 市场模拟(第 09 部分):自定义事件

在此,我们将见到自定义事件是如何被触发的,以及指标如何报告回放/模拟服务的状态。
preview
复购算法:模拟多币种交易

复购算法:模拟多币种交易

在本文中,我们将创建一个模拟多币种定价的数学模型,并针对多元化原理进行彻底研究,作为搜索提高交易效率机制的一部分,我在上一篇文章中已经开始了理论计算。
preview
理解并有效地使用 MQL5 策略测试器

理解并有效地使用 MQL5 策略测试器

对于 MQL5 程序员或开发人员,一项基本需求就是掌握那些重要且颇具价值的工具。 其中一个工具是策略测试器,本文是理解和使用 MQL5 策略测试器的实用指南。
preview
MQL5 中的范畴论 (第 8 部分):幺半群(Monoids)

MQL5 中的范畴论 (第 8 部分):幺半群(Monoids)

本文是以 MQL5 实现范畴论系列的延续。 本期,我们引入幺半群作为域(集合),通过包含规则和幺元,将范畴论自其它数据分类方法分离开来。
preview
您应该知道的 MQL5 向导技术(第 06 部分):傅里叶(Fourier)变换

您应该知道的 MQL5 向导技术(第 06 部分):傅里叶(Fourier)变换

约瑟夫·傅里叶(Joseph Fourier)引入的傅里叶变换是将复杂的数据波分解构为简单分量波的一种方法。 此功能对交易者来说可能更机敏,本文将对此进行关注。
preview
开发回放系统 — 市场模拟(第 08 部分):锁定指标

开发回放系统 — 市场模拟(第 08 部分):锁定指标

在本文中,我们将亲眼见证如何在简单地利用 MQL5 语言锁定指标,我们将以一种非常有趣和迷人的方式做到这一点。
preview
开发回放系统 — 市场模拟(第 07 部分):首次改进(II)

开发回放系统 — 市场模拟(第 07 部分):首次改进(II)

在上一篇文章中,我们针对复现系统进行了一些修复并加入了测试,以确保可能的最佳稳定性。 我们还着手为这个系统创建和使用配置文件。
preview
开发回放系统 — 市场模拟(第 06 部分):首次改进(I)

开发回放系统 — 市场模拟(第 06 部分):首次改进(I)

在本文中,我们将开始稳固整个系统,若无,则我们可能无法进行后续步骤。
preview
MQL5 中的范畴论 (第 7 部分):多域、相对域和索引域

MQL5 中的范畴论 (第 7 部分):多域、相对域和索引域

范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
preview
MetaTrader 中的多机器人:从单图表中启动多个机器人

MetaTrader 中的多机器人:从单图表中启动多个机器人

在本文中,我将研究一个简单的模板,用来创建通用的 MetaTrader 机器人,该机器人可以在多个图表上使用,同时仅附加到一个图表,无需在每个单独的图表上为每个机器人实例进行配置。
preview
基于改进的十字星(Doji)烛条形态识别指标的交易策略

基于改进的十字星(Doji)烛条形态识别指标的交易策略

基于元柱线的指标比之传统指标,能检测到的蜡烛更多。 我们来检查一下这能否在自动交易中提供真正的益处。
preview
开发回放系统 — 市场模拟(第 05 部分):加入预览

开发回放系统 — 市场模拟(第 05 部分):加入预览

我们已设法开发了一套以逼真和可访问的方式来实现市场回放的系统。 现在,我们继续我们的项目,并添加数据,从而提升回放行为。
preview
MQL5 中的范畴论 (第 5 部分):均衡器

MQL5 中的范畴论 (第 5 部分):均衡器

范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
preview
种群优化算法:类电磁算法(EM - ElectroMagnetism)

种群优化算法:类电磁算法(EM - ElectroMagnetism)

本文讲述在各种优化问题中采用电磁算法(EM - ElectroMagnetism)的原理、方法和可能性。 EM 算法是一种高效的优化工具,能够处理大量数据和多维函数。
preview
MQL5 中的范畴论 (第 4 部分):跨度、实验、及合成

MQL5 中的范畴论 (第 4 部分):跨度、实验、及合成

范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,提供洞察力,同时希望在交易者的策略开发中进一步运用这一非凡的领域。
preview
开发回放系统 — 市场模拟(第 04 部分):调整设置(II)

开发回放系统 — 市场模拟(第 04 部分):调整设置(II)

我们继续创建系统和控制。 没有掌控服务的能力,就很难向前推进和改进系统。
preview
开发回放系统 — 市场模拟(第 03 部分):调整设置(I)

开发回放系统 — 市场模拟(第 03 部分):调整设置(I)

我们从梳理当前状况开始,因为我们尚未以最好的方式开始。 如果我们现在不这样做,我们很快就会遇到麻烦。
preview
种群优化算法:树苗播种和成长(SSG)算法

种群优化算法:树苗播种和成长(SSG)算法

树苗播种和成长(SSG)算法的灵感来自星球上最具韧性的生物之一,在各种条件下都表现出杰出的生存能力。
preview
开发回放系统 — 市场模拟(第 02 部分):首次实验(II)

开发回放系统 — 市场模拟(第 02 部分):首次实验(II)

这一次,我们尝试换一种不同的方式来实现 1 分钟的目标。 然而,这项任务并非如人们想象的那么简单。
preview
种群优化算法:猴子算法(MA)

种群优化算法:猴子算法(MA)

在本文中,我将研究猴子优化算法(MA)。 这些动物克服困难障碍,并到达最难以接近的树顶的能力构成了 MA 算法思想的基础。
preview
开发回放系统 — 市场模拟(第 01 部分):首次实验(I)

开发回放系统 — 市场模拟(第 01 部分):首次实验(I)

如何创建一个系统,让我们在闭市后也能研究市场,甚至模拟市场情况? 在此,我们将开始一系列新的文章,在其中我们将应对这个主题。
preview
利用 MQL5 矩阵的反向传播神经网络

利用 MQL5 矩阵的反向传播神经网络

本文讲述在 MQL5 中利用矩阵来应用反向传播算法的理论和实践。 它还提供了现成的类,以及脚本、指标和智能交易系统的示例。
preview
多层感知器和反向传播算法(第 3 部分):与策略测试器集成 - 概述(I)

多层感知器和反向传播算法(第 3 部分):与策略测试器集成 - 概述(I)

多层感知器是简单感知器的演变,可以解决非线性可分离问题。 结合反向传播算法,可以有效地训练该神经网络。 在多层感知器和反向传播系列的第 3 部分当中,我们将见识到如何将此技术集成到策略测试器之中。 这种集成将允许使用复杂的数据分析,旨在制定更好的决策,从而优化您的交易策略。 在本文中,我们将讨论这种技术的优点和问题。
preview
如何选择智能系统:拒绝一款交易机器人的 20 条强大准则

如何选择智能系统:拒绝一款交易机器人的 20 条强大准则

本文尝试回答这个问题:我们如何选择正确的智能系统? 哪些最适合我们的投资组合,我们如何过滤市场上提供的庞大交易机器人列表? 本文将介绍二十条明确而强大的准则来拒绝一款智能系统。 每条提出的准则都将得到很好的解释,从而帮助您做出更持久的决定,并为您建立一个更有前途的智能系统集合,从而赚取利润。
preview
在 MetaTrader 5 中测试和优化二元期权策略

在 MetaTrader 5 中测试和优化二元期权策略

在本文中,我将在 MetaTrader 5 中检查并优化二元期权策略。
preview
您应该知道的 MQL5 向导技术(第 05 部分):马尔可夫(Markov)链

您应该知道的 MQL5 向导技术(第 05 部分):马尔可夫(Markov)链

马尔可夫(Markov)链是一个强大的数学工具,能够针对包括金融在内的各个领域的时间序列数据进行建模和预测。 在金融时间序列建模和预测中,马尔可夫链通常用于模拟金融资产随时间的演变,例如股票价格或汇率。 马尔可夫链模型的主要优点之一是其简单性和易用性。
preview
种群优化算法:鱼群搜索(FSS)

种群优化算法:鱼群搜索(FSS)

鱼群搜索(FSS)是一种新的优化算法,其灵感来自鱼群中鱼的行为,其中大多数(高达 80%)游弋在有组织的亲属群落中。 经证明,鱼类的聚集在觅食效率和保护捕食者方面起着重要作用。
preview
种群优化算法:杜鹃优化算法(COA)

种群优化算法:杜鹃优化算法(COA)

我将研究的下一个算法是 Levy 飞行正在使用的杜鹃搜索优化。 这是最新的优化算法之一,也是排行榜的新领导者。
preview
种群优化算法:灰狼优化器(GWO)

种群优化算法:灰狼优化器(GWO)

我们来研究一种最新的现代优化算法 — 灰狼优化。 测试函数的原始行为令该算法成为以前研究过的算法中最有趣的算法之一。 这是训练神经网络的顶级算法之一,具有许多变量的平滑函数。
preview
种群优化算法:人工蜂群(ABC)

种群优化算法:人工蜂群(ABC)

在本文中,我们将研究人工蜂群的算法,并用研究函数空间得到的新原理来补充我们的知识库。 在本文中,我将陈列我对经典算法版本的解释。
preview
种群优化算法:蚁群优化(ACO)

种群优化算法:蚁群优化(ACO)

这次我将分析蚁群优化算法。 该算法非常有趣且复杂。 在本文中,我尝试创建一种新型的 ACO。
preview
帧分析器(Frames Analyzer)工具带来的时间片交易魔法

帧分析器(Frames Analyzer)工具带来的时间片交易魔法

什么是帧分析器(Frames Analyzer)? 这是适用于任意智能系统的一个插件模块,在策略测试器中、以及测试器之外进行参数优化期间,该工具在参数优化完成后立即读取测试创建的 MQD 文件、或数据库,并分析优化帧数据。 您能够与拥有帧分析器工具的其他用户共享这些优化结果,从而共同讨论结果。
preview
群体优化算法:粒子群(PSO)

群体优化算法:粒子群(PSO)

在本文中,我将研究流行的粒子群优化(PSO)算法。 之前,我们曾讨论过优化算法的重要特征,如收敛性、收敛率、稳定性、可伸缩性,并开发了一个测试台,并研究了最简单的 RNG 算法。
preview
您应该知道的 MQL5 向导技术(第 03 部分):香农(Shannon)熵

您应该知道的 MQL5 向导技术(第 03 部分):香农(Shannon)熵

今天的交易者都是哲学家,几乎总是在寻找新的想法,尝试提炼它们,选择修改或丢弃它们:一个探索性的过程,肯定会花费相当的勤奋程度。 本系列文章将提出,MQL5 向导应该是交易者的支柱。