Dmitriy Gizlyk
Dmitriy Gizlyk
  • 정보
12+ 년도
경험
0
제품
0
데몬 버전
134
작업
0
거래 신호
0
구독자
Professional programming of any complexity for MT4, MT5, C#.
Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: Выявление аномалий в частотной области (CATCH)
Нейросети в трейдинге: Выявление аномалий в частотной области (CATCH)

Фреймворк CATCH сочетает преобразование Фурье и частотный патчинг для точного выявления рыночных аномалий, недоступных традиционным методам. В данной работе мы рассмотрим, как этот подход раскрывает скрытые закономерности в финансовых данных.

Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: Адаптивное обнаружение рыночных аномалий (Окончание)
Нейросети в трейдинге: Адаптивное обнаружение рыночных аномалий (Окончание)

Продолжаем построение алгоритмов, заложенные в основу фреймворка DADA — передового инструмента для обнаружения аномалий во временных рядах. Этот подход позволяет эффективно отличать случайные флуктуации от значимых отклонений. В отличие от классических методов, DADA динамически адаптируется к разным типам данных, выбирая оптимальный уровень сжатия в каждом конкретном случае.

Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: Адаптивное обнаружение рыночных аномалий (DADA)
Нейросети в трейдинге: Адаптивное обнаружение рыночных аномалий (DADA)

Предлагаем познакомиться с фреймворком DADA — инновационным методом выявления аномалий во временных рядах. Он помогает отличить случайные колебания от подозрительных отклонений. В отличие от традиционных методов, DADA гибко подстраивается под разные данные. Вместо фиксированного уровня сжатия он использует несколько вариантов и выбирает наиболее подходящий для каждого случая.

Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: Двойная кластеризация временных рядов (Окончание)
Нейросети в трейдинге: Двойная кластеризация временных рядов (Окончание)

Продолжаем реализацию подходов, предложенных авторами фреймворка DUET, который предлагает инновационный подход к анализу временных рядов, сочетая временную и канальную кластеризацию для выявления скрытых закономерностей в анализируемых данных.

Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: Двойная кластеризация временных рядов (DUET)
Нейросети в трейдинге: Двойная кластеризация временных рядов (DUET)

Фреймворк DUET предлагает инновационный подход к анализу временных рядов, сочетая временную и канальную кластеризацию для выявления скрытых закономерностей в анализируемых данных. Это позволяет адаптировать модели к изменениям во времени и повысить качество прогнозирования за счет устранения шума.

Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Окончание)
Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Окончание)

Продолжаем интеграцию методов, предложенных авторами фреймворка Attraos, в торговые модели. Напомню, что данный фреймворк использует концепции теории хаоса для решения задач прогнозирования временных рядов, интерпретируя их как проекции многомерных хаотических динамических систем.

1
Dmitriy Gizlyk
게재된 기고글 Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Attraos)
Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Attraos)

Фреймворк Attraos интегрирует теорию хаоса в долгосрочное прогнозирование временных рядов, рассматривая их как проекции многомерных хаотических динамических систем. Используя инвариантность аттрактора, модель применяет реконструкцию фазового пространства и динамическую память с несколькими разрешениями для сохранения исторических структур.

Dmitriy Gizlyk
게재된 기고글 Neural Networks in Trading: Hybrid Graph Sequence Models (Final Part)
Neural Networks in Trading: Hybrid Graph Sequence Models (Final Part)

We continue exploring hybrid graph sequence models (GSM++), which integrate the advantages of different architectures, providing high analysis accuracy and efficient distribution of computing resources. These models effectively identify hidden patterns, reducing the impact of market noise and improving forecasting quality.

1
Dmitriy Gizlyk
게재된 기고글 Neural Networks in Trading: Hybrid Graph Sequence Models (GSM++)
Neural Networks in Trading: Hybrid Graph Sequence Models (GSM++)

Hybrid graph sequence models (GSM++) combine the advantages of different architectures to provide high-fidelity data analysis and optimized computational costs. These models adapt effectively to dynamic market data, improving the presentation and processing of financial information.

Dmitriy Gizlyk
게재된 기고글 Neural Networks in Trading: Two-Dimensional Connection Space Models (Final Part)
Neural Networks in Trading: Two-Dimensional Connection Space Models (Final Part)

We continue to explore the innovative Chimera framework – a two-dimensional state-space model that uses neural network technologies to analyze multidimensional time series. This method provides high forecasting accuracy with low computational cost.

Dmitriy Gizlyk
게재된 기고글 Neural Networks in Trading: Two-Dimensional Connection Space Models (Chimera)
Neural Networks in Trading: Two-Dimensional Connection Space Models (Chimera)

In this article, we will explore the innovative Chimera framework: a two-dimensional state-space model that uses neural networks to analyze multivariate time series. This method offers high accuracy with low computational cost, outperforming traditional approaches and Transformer architectures.

Dmitriy Gizlyk
게재된 기고글 Neural Networks in Trading: Multi-Task Learning Based on the ResNeXt Model (Final Part)
Neural Networks in Trading: Multi-Task Learning Based on the ResNeXt Model (Final Part)

We continue exploring a multi-task learning framework based on ResNeXt, which is characterized by modularity, high computational efficiency, and the ability to identify stable patterns in data. Using a single encoder and specialized "heads" reduces the risk of model overfitting and improves the quality of forecasts.

Dmitriy Gizlyk
게재된 기고글 Neural Networks in Trading: Multi-Task Learning Based on the ResNeXt Model
Neural Networks in Trading: Multi-Task Learning Based on the ResNeXt Model

A multi-task learning framework based on ResNeXt optimizes the analysis of financial data, taking into account its high dimensionality, nonlinearity, and time dependencies. The use of group convolution and specialized heads allows the model to effectively extract key features from the input data.

Dmitriy Gizlyk
게재된 기고글 Neural Networks in Trading: Hierarchical Dual-Tower Transformer (Final Part)
Neural Networks in Trading: Hierarchical Dual-Tower Transformer (Final Part)

We continue to build the Hidformer hierarchical dual-tower transformer model designed for analyzing and forecasting complex multivariate time series. In this article, we will bring the work we started earlier to its logical conclusion — we will test the model on real historical data.

Dmitriy Gizlyk
게재된 기고글 Neural Networks in Trading: Hierarchical Dual-Tower Transformer (Hidformer)
Neural Networks in Trading: Hierarchical Dual-Tower Transformer (Hidformer)

We invite you to get acquainted with the Hierarchical Double-Tower Transformer (Hidformer) framework, which was developed for time series forecasting and data analysis. The framework authors proposed several improvements to the Transformer architecture, which resulted in increased forecast accuracy and reduced computational resource consumption.

Dmitriy Gizlyk
게재된 기고글 Neural Networks in Trading: Memory Augmented Context-Aware Learning for Cryptocurrency Markets (Final Part)
Neural Networks in Trading: Memory Augmented Context-Aware Learning for Cryptocurrency Markets (Final Part)

The MacroHFT framework for high-frequency cryptocurrency trading uses context-aware reinforcement learning and memory to adapt to dynamic market conditions. At the end of this article, we will test the implemented approaches on real historical data to assess their effectiveness.

Dmitriy Gizlyk
게재된 기고글 Neural Networks in Trading: Memory Augmented Context-Aware Learning (MacroHFT) for Cryptocurrency Markets
Neural Networks in Trading: Memory Augmented Context-Aware Learning (MacroHFT) for Cryptocurrency Markets

I invite you to explore the MacroHFT framework, which applies context-aware reinforcement learning and memory to improve high-frequency cryptocurrency trading decisions using macroeconomic data and adaptive agents.

1
Dmitriy Gizlyk
게재된 기고글 Neural Networks in Trading: A Multi-Agent System with Conceptual Reinforcement (Final Part)
Neural Networks in Trading: A Multi-Agent System with Conceptual Reinforcement (Final Part)

We continue to implement the approaches proposed by the authors of the FinCon framework. FinCon is a multi-agent system based on Large Language Models (LLMs). Today, we will implement the necessary modules and conduct comprehensive testing of the model on real historical data.

1
Dmitriy Gizlyk
게재된 기고글 Neural Networks in Trading: A Multi-Agent System with Conceptual Reinforcement (FinCon)
Neural Networks in Trading: A Multi-Agent System with Conceptual Reinforcement (FinCon)

We invite you to explore the FinCon framework, which is a a Large Language Model (LLM)-based multi-agent system. The framework uses conceptual verbal reinforcement to improve decision making and risk management, enabling effective performance on a variety of financial tasks.

Dmitriy Gizlyk
게재된 기고글 Neural Networks in Trading: A Multimodal, Tool-Augmented Agent for Financial Markets (Final Part)
Neural Networks in Trading: A Multimodal, Tool-Augmented Agent for Financial Markets (Final Part)

We continue to develop the algorithms for FinAgent, a multimodal financial trading agent designed to analyze multimodal market dynamics data and historical trading patterns.