

より優れたプログラマー(第03部): MQL5プログラマーとして成功するためにあきらめなければいけない5つのこと
この記事は、プログラミングのキャリアを向上させたい人にとって必読です。本連載は、どんなに経験が豊富な読者でも最高のプログラマーになれることを目的としています。議論されたアイデアは、MQL5プログラミングの初心者だけでなくプロにも役立ちます。


DoEasyライブラリのグラフィックス(第81部): ライブラリオブジェクトへのグラフィックの統合
すでに作成されたオブジェクトを以前に作成されたライブラリオブジェクトに統合する時が来ました。最終的には各ライブラリオブジェクトに独自のグラフィカルオブジェクトが付与されるようになり、ユーザーはプログラムを操作できるようになります。


DoEasyライブラリのグラフィックス(第80部): 「幾何学的アニメーションフレーム」オブジェクトクラス
本稿では、前の記事のクラスのコードを最適化し、指定された数の頂点を持つ正多角形を描画するための幾何学的アニメーションフレームオブジェクトクラスを作成します。


より優れたプログラマー(第01部): MQL5プログラマーとして成功するためにやめなければいけない5つのこと
初心者が最高のコーディングキャリアを築くのを妨げている悪い習慣はたくさんあります。これは上級プログラマーさえにも言えることです。この記事では、それらについて説明し、対処します。この記事は、MQL5で開発者として成功したいすべての人にとって必読です。


DoEasyライブラリのグラフィックス(第79部): 「アニメーションフレーム」オブジェクトクラスとその子孫オブジェクト
本稿では、単一のアニメーションフレームとその子孫のクラスを開発します。このクラスでは、形状の下の背景を維持および復元しながら、形状を描画できるようにします。


DoEasyライブラリのグラフィックス(第78部): ライブラリのアニメーションの原則イメージスライス
この記事では、ライブラリの一部で使用されるアニメーションの原則を定義します。また、画像の一部をコピーして指定したフォームオブジェクトの場所に貼り付け、画像が重ねられるフォームの背景の一部を保存して復元するクラスを開発します。


DoEasyライブラリのグラフィックス(第77部): 影オブジェクトクラス
本稿では、グラフィック要素オブジェクトの子孫である 影オブジェクトのクラスを作成し、オブジェクトの背景をグラデーションで塗りつぶす機能を追加します。


DoEasyライブラリのグラフィックス(第76部): フォームオブジェクトと事前定義されたカラースキーム
本稿では、さまざまなライブラリGUIデザインテーマの構築の概念について説明し、グラフィック要素クラスオブジェクトの子孫であるフォームオブジェクトを作成し、ライブラリのグラフィカルオブジェクトのシャドウを作成するため、および機能をさらに開発するためのデータを準備します。

クラスター分析(第I部):インジケーターラインの傾きをマスターする
クラスター分析は、人工知能の最も重要な要素の1つです。この記事では、指標の傾きのクラスター分析を適用して、市場が横ばいであるかトレンドに従っているのかを判断するためのしきい値の取得を試みます。


DoEasyライブラリのグラフィックス(第75部): 基本的なグラフィック要素でプリミティブとテキストを処理するメソッド
本稿では引き続き、CCanvas標準ライブラリクラスを使用したすべてのライブラリグラフィカルオブジェクトの基本的なグラフィック要素クラスを開発します。グラフィカルプリミティブを描画するメソッドとグラフィック要素オブジェクトにテキストを表示するメソッドを作成します。


DoEasyライブラリのグラフィックス(第74部): CCanvasクラスを使用した基本的グラフィック要素
本稿では、前の記事からのグラフィカルオブジェクトを構築するという概念を作り直し、標準ライブラリCCanvasクラスを利用したライブラリのすべてのグラフィカルオブジェクトの基本クラスを準備します。


DoEasyライブラリのグラフィックス(第73部): グラフィック要素のフォームオブジェクト
本稿からは、ライブラリでのグラフィックの使用に関する新しい大きなセクションを始めます。本稿では、マウスステータスオブジェクト、すべてのグラフィック要素の基本オブジェクト、およびライブラリのグラフィック要素のフォームオブジェクトのクラスを作成します。


DoEasyライブラリでのその他のクラス(第72部): コレクション内のチャートオブジェクトパラメータの追跡と記録
本稿では、チャートオブジェクトクラスとそのコレクションの操作を完成します。また、チャートプロパティとそのウィンドウの変更の自動追跡を実装し、オブジェクトプロパティに新しいパラメータを保存します。このような変更により、を将来チャートコレクション全体のイベント機能実装できるようになります。


プロのプログラマーからのヒント(第2部): パラメータの保存とエキスパートアドバイザー、スクリプト、外部プログラム間での交換
プログラミングを容易にする方法、テクニック、および補助ツールに関するプロのプログラマーからのヒントです。ターミナルの再起動(シャットダウン)後に復元できるパラメータについて説明します。すべての例は、私のCaymanプロジェクトからの実際に機能するコードセグメントです。


DoEasyライブラリでのその他のクラス(第71部): チャットオブジェクトコレクションイベント
本稿では、いくつかのチャートオブジェクトイベント(銘柄チャートとチャートサブウィンドウの追加/削除、およびチャートウィンドウの指標の追加/削除/変更)を追跡する機能を作成します。


DoEasyライブラリでのその他のクラス(第70部): チャットオブジェクトコレクショの機能拡張と自動更新
本稿では、チャートオブジェクトの機能を拡張し、チャートのナビゲーション、スクリーンショットの作成、チャートの保存と適用を行います。また、チャートオブジェクトのコレクション、それらのウィンドウ、およびその中の指標の自動更新を実装します。

プロのプログラマーからのヒント(第I部): コードの保存、デバッグ、コンパイルプロジェクトとログの操作
プログラミングを容易にする方法、テクニック、および補助ツールに関するプロのプログラマーからのヒントです。


DoEasyライブラリでのその他のクラス(第69部): チャットオブジェクトコレクションクラス
本稿からチャートオブジェクトコレクションクラスの開発を開始します。このクラスでは、サブウィンドウと指標とともにチャートオブジェクトのコレクションリストを保存し、選択したチャートとそのサブウィンドウ、または複数のチャートのリストを一度に操作する機能を提供します。


DoEasyライブラリでのその他のクラス(第68部): チャットウィンドウオブジェクトクラスとチャートでの指標オブジェクトクラス
本稿では、チャートオブジェクトクラスの開発を続け、利用可能な指標のリストを含むチャートウィンドウオブジェクトのリストに追加します。

ニューラルネットワークが簡単に(第13回): Batch Normalization
前回の記事では、ニューラルネットワーク訓練の品質を向上させることを目的とした手法の説明を開始しました。本稿では、このトピックを継続し、別のアプローチであるデータのBatch Normalizationについて説明します。

ニューラルネットワークが簡単に(第12回): ドロップアウト
ニューラルネットワークを研究する次のステップとして、ニューラルネットワークの訓練中に収束を高める手法を検討することをお勧めします。そのような手法はいくつかありますが、本稿では、それらの1つである「ドロップアウト」について考察します。


DoEasyライブラリでのその他のクラス(第67部): チャットオブジェクトクラス
本稿では、(単一の取引製品チャートの)チャートオブジェクトクラスを作成し、MQL5シグナルオブジェクトのコレクションクラスを改善して、コレクションに格納されている各シグナルオブジェクトでリストの更新時にすべてのパラメータが更新されるようにします。

多層パーセプトロンとバックプロパゲーションアルゴリズム
これら2つの手法の人気が高まり、Matlab、R、Python、C ++などで多くのライブラリが開発されています。これらのライブラリは、入力として訓練セットを受け取り、問題に適切なネットワークを自動的に作成します。基本的なニューラルネットワークタイプ(単一ニューロンパーセプトロンと多層パーセプトロンを含む)がどのように機能するかを理解してみましょう。ネットワークを訓練するためのエキサイティングなアルゴリズムである勾配降下法とバックプロパゲーションについて検討します。既存の複雑なモデルは、多くの場合、このような単純なネットワークモデルに基づいています。

自動取引のための便利でエキゾチックな技術
本稿では、自動取引のためのいくつかの非常に興味深く有用な技術を紹介します。それらのいくつかには馴染みがあるかもしれません。最も興味深い手法を取り上げ、なぜ使用する価値があるのかを説明します。さらに、これらの技術の実際面での傾向を示します。エキスパートアドバイザーを作成し、説明されているすべての技術を相場履歴を使用してテストします。


DoEasyライブラリでのその他のクラス(第66部): MQL5.comシグナルコレクションクラス
本稿では、シグナルを管理する関数を備えたMQL5.comシグナルサービスのシグナルコレクションクラスを作成します。さらに、DOMの売買取引高の合計を表示するように板情報スナップショットオブジェクトクラスを改善します。


DoEasyライブラリでの価格(第65部): 板情報コレクションとMQL5.comシグナル操作クラス
本稿では、すべての銘柄の板情報コレクションクラスを作成し、シグナルオブジェクトクラスを作成することによってMQL5.comシグナルサービスを使用するための機能の開発を開始します。


DoEasyライブラリでの価格(第64部): 板情報、DOMスナップショットのクラスおよびスナップショットシリーズオブジェクト
本稿では、2つのクラス(DOMスナップショットオブジェクトのクラスとDOMスナップショットシリーズオブジェクトのクラス)を作成し、DOMデータシリーズの作成をテストします。


DoEasyライブラリでの価格(第63部): 板情報とその抽象リクエストクラス
本稿では、板情報を使用するための機能の開発を開始します。また、板情報抽象注文オブジェクトとその子孫のクラスも作成します。


DoEasyライブラリでの価格(第62部): ティックシリーズをリアルタイムで更新して板情報で作業するための準備
この記事では、ティックデータの更新をリアルタイムで実装し、板情報を操作するための銘柄オブジェクトクラスを準備します(DOM自体は次の記事で実装されます)。


DoEasyライブラリでの価格(第61部): 銘柄ティックシリーズのコレクション
プログラムでは作業に異なる銘柄を使用する可能性があるため、それぞれに個別のリストを作成する必要があります。本稿では、そのようなリストを組み合わせてティックデータコレクションにします。実際、これは、CObjectクラスのインスタンスへのポインタの動的配列のクラスおよび標準ライブラリの子孫に基づく通常のリストになります。

ニューラルネットワークが簡単に(第10回): Multi-Head Attention
ニューラルネットワークにおける自己注意のメカニズムについては、以前に検討しました。実際には、最新のニューラルネットワークアーキテクチャは、いくつかの並列した自己注意スレッドを使用して、シーケンスの要素間のさまざまな依存関係を見つけます。このようなアプローチの実装を検討し、ネットワーク全体のパフォーマンスへの影響を評価しましょう。


DoEasyライブラリでの価格(第60部): 銘柄ティックデータのシリーズリスト
本稿では、単一銘柄のティックデータを格納するためのリストを作成し、EAでの必要なデータの作成と取得を確認します。さらに、使用される銘柄ごとの個別のティックデータリストでティックデータのコレクションを構成します。

ニューラルネットワークが簡単に(第9部):作業の文書化
長い道のりでした。ライブラリ内のコードはどんどん増えてきており、すべてのリンクと依存関係を追跡することが困難になっています。したがって、以前に作成したコードのドキュメントを作成し、新しい手順ごとに更新し続けることをお勧めします。適切に準備された文書化は、作業の整合性を確認するのに役立ちます。

ニューラルネットワークが簡単に(第8回): アテンションメカニズム
以前の記事では、ニューラルネットワークを整理するための様々な選択肢を既に検証しました. また、画像処理アルゴリズムから借りた畳み込みネットワークについても検討しました. 今回の記事では、言語モデルの開発に弾みをつけた「アテンション・メカニズム」を考えることを提案します.


DoEasyライブラリの時系列(第59部): 単一ティックのデータを格納するオブジェクト
本稿からは、価格データを処理するライブラリ機能を作成します。今日、さらに別のティックで到着したすべての価格データを格納するオブジェクトクラスを作成します。

DoEasyライブラリの時系列(第58部): 指標バッファデータの時系列
時系列の操作に関するトピックのしめくくりとして、指標バッファに格納されているストレージ、検索、およびデータの並べ替えを整理します。これにより、プログラムでライブラリベースで作成される指標の値に基づいて分析をさらに実行できます。ライブラリのすべてのコレクションクラスの一般的な概念により、対応するコレクションで必要なデータを簡単に見つけることができます。それぞれ、今日作成されたクラスでも同じことが可能です。

トレーディングにおけるニューラルネットワークの実用化。 Python (パートI)
今回は、Pythonによるディープニューラルネットワークのプログラミングに基づいたトレードシステムの実装を一つ一つ分析します。 Googleが開発した機械学習ライブラリ「TensorFlow」を使って行います。 また、ニューラルネットワークの記述にはKerasライブラリを使用します。


スプレッドシートを使ってトレード戦略を構築する
この記事では、スプレッドシート(Excel、Calc、Google)を使ってあらゆる戦略を分析できるようにするための基本的な考え方や方法を解説します。 得られた結果をMetaTrader5のテスターと比較します。

MetaTrader5のWebSocket
MQL5 APIが更新されてネットワーク機能が導入される前は、MetaTraderプログラムでは、WebSocketベースのサービスに接続してインターフェイスする機能が制限されていました。しかしもちろん、これはすべて変わっています。本稿では、純粋なMQL5でのWebSocketライブラリの実装について説明します。WebSocketプロトコルの簡単な説明とともに結果のライブラリの使用方法に関する手順のガイドが提示されます。

アルゴリズム取引から100万ドルを稼ぐ方法?MQL5.comサービスを使用してください
トレーダーは皆、最初の百万ドルを稼ぐことを目標に市場を訪れます。過度のリスクと初期予算なしでこれを行う方法は何でしょうか。MQL5サービスは、世界中の開発者やトレーダーにそのような機会を提供します。