- Activation
- Derivative
- Loss
- LossGradient
- RegressionMetric
- ConfusionMatrix
- ConfusionMatrixMultilabel
- ClassificationMetric
- ClassificationScore
- PrecisionRecall
- ReceiverOperatingCharacteristic
RegressionMetric
Compute the regression metric to evaluate the quality of the predicted data compared to the true data
double vector::RegressionMetric(
|
Parameters
vector_true/matrix_true
[in] Vector or matrix of true values.
metric
[in] Metric type from the ENUM_REGRESSION_METRIC enumeration.
axis
[in] Axis. 0 — horizontal axis, 1 — vertical axis.
Return Value
The calculated metric which evaluates the quality of the predicted data compared to the true data.
Note
- REGRESSION_MAE — mean absolute error which represents the absolute differences between predicted values and corresponding true values
- REGRESSION_MSE — mean square error which represents the squared differences between predicted values and corresponding true values
- REGRESSION_RMSE — square root of MSE
- REGRESSION_R2 - 1 — MSE(regression) / MSE(mean)
- REGRESSION_MAPE — MAE as a percentage
- REGRESSION_MSPE — MSE as a percentage
- REGRESSION_RMSLE — RMSE computed on a logarithmic scale
Example:
vector y_true = {3, -0.5, 2, 7};
|