パブリッシュされた記事"トレード戦略の色の最適化".
この記事では、ある実験をします。つまり、色の最適化の結果を行います。 色は、赤、緑、青 (RGB) のレベルの3つのパラメータによって決まります。 他にも3つのパラメータを使用した色分け方法があります。 したがって、3つのテストパラメータを1つの色に変換して、値を視覚的に表すことができます。 この記事を読んで、このような表現が役立つかどうかを確認してください。
この記事では、ある実験をします。つまり、色の最適化の結果を行います。 色は、赤、緑、青 (RGB) のレベルの3つのパラメータによって決まります。 他にも3つのパラメータを使用した色分け方法があります。 したがって、3つのテストパラメータを1つの色に変換して、値を視覚的に表すことができます。 この記事を読んで、このような表現が役立つかどうかを確認してください。

この記事では、トレード履歴を評価するためのカスタム・メソッドについて説明します。 2つのクラスが、ヒストリーを分析するために書かれ、ダウンロード可能です。 最初のトレード履歴を収集し、要約表として表します。 2番目は、統計情報を扱います。: 変数を計算し、トレード結果のより効率的な評価チャートを構築します。

この記事シリーズは、プログラミングのことは何も知らないが、最短の時間、最小の労力でできるだけ速く MQL4 言語を学びたいという願いを持つトレーダーを対象としています。みなさんが『オブジェクト指向』、『三次元配列』などのフレーズに恐れをいだいているなら、本稿はそんな人が必要とするものです。レッスンは最大に迅速な結果を出すために作成されています。そのうえ、情報は理解しやすいように提供されています。理論を深く掘り下げすぎることはしませんが、初回レッスンですでに実用的な効用を得ることでしょう。

包括的なデータ処理には広範なツールが必要であり、多くの場合、1つのアプリケーションのサンドボックスの範疇を超えています。 専門のプログラミング言語は、データ、統計、機械学習の処理と分析に使用されます。 データ処理の主要なプログラミング言語の1つは Python です。 この記事では、ソケットを使用して MetaTrader5 と Python を接続する方法、およびターミナル API を介してクオートを受け取る方法について説明します。
膨大な数の取引戦略やMetaTrader 5およびMetaTrader 4ターミナル用アプリケーションの開発の注文、さまざまなMetaTrader Webサイトを分析しているうちに、私は、このすべての多様性のほとんどが、異なるプログラムで定期的に現れる同じ基本的な機能、行動、および価値観に基づいているという結論に達しました。これにより、МetaТrader5およびМetaТrader4アプリケーションを簡単かつ迅速に開発するためのDoEasyクロスプラットフォームライブラリが完成しました。

本稿では、よくあるローソク足のパターンを考察し、それが今日の市場で依然として適切で効果的であるかどうかの理解を試みます。ローソク足分析は20年以上前に登場し、それ以来かなり普及しています。日本発祥のローソク足は、多くのトレーダーによって、最も便利で分かりやすい資産価格の視覚化形式だと考えられています。

この記事シリーズは、プログラミングのことは何も知らないが、最短の時間、最小の労力でできるだけ速く MQL4 言語を学びたいという願いを持つトレーダーを対象としています。みなさんが『オブジェクト指向』、『三次元配列』などのフレーズに恐れをいだいているなら、本稿はそんな人が必要とするものです。レッスンは最大に迅速な結果を出すために作成されています。そのうえ、情報は理解しやすいように提供されています。理論を深く掘り下げすぎることはしませんが、初回レッスンですでに実用的な効用を得ることでしょう。

この記事では、トレード履歴を評価するためのカスタム・メソッドについて説明します。 2つのクラスが、ヒストリーを分析するために書かれ、ダウンロード可能です。 最初のトレード履歴を収集し、要約表として表します。 2番目は、統計情報を扱います。: 変数を計算し、トレード結果のより効率的な評価チャートを構築します。

この記事シリーズは、プログラミングのことは何も知らないが、最短の時間、最小の労力でできるだけ速く MQL4 言語を学びたいという願いを持つトレーダーを対象としています。みなさんが『オブジェクト指向』、『三次元配列』などのフレーズに恐れをいだいているなら、本稿はそんな人が必要とするものです。レッスンは最大に迅速な結果を出すために作成されています。そのうえ、情報は理解しやすいように提供されています。理論を深く掘り下げすぎることはしませんが、初回レッスンですでに実用的な効用を得ることでしょう。

Kohonen ネットワークを扱うために設計されたユニバーサルツールに基づいて、最適なEAパラメータを分析して選択するシステムを構築し、時系列の予測を検討します。 第 I 部では、必要なアルゴリズムを追加して、一般に公開されているニューラルネットワーククラスを修正し、改善しました。 今回はこれを実践に応用しましょう。