Yevgeniy Koshtenko
Yevgeniy Koshtenko
  • Информация
2 года
опыт работы
7
продуктов
66
демо-версий
0
работ
0
сигналов
0
подписчиков
Приветствую вас в мире профессионального алготрейдинга!

Я разрабатываю высокоэффективные торговые индикаторы и советники на основе передовых технологий машинного обучения и квантовых вычислений, которые помогают трейдерам достигать стабильной прибыли на финансовых рынках.

Мой путь: На рынке с 2016 года. Прошел через множество потерь и ошибок. Сейчас специализируюсь на разработке торговых роботов и применении машинного обучения в трейдинге. Активно инвестирую на рынках России и Казахстана.

Квалифицированный инвестор Республики Казахстан. Квалифицированный иностранный инвестор Российской Федерации.

Для хэдж-фондов и семейных офисов у меня также есть MIDAS — институциональная сложная многоагентная нейронная архитектура + квантовый слой + многомерный самообучающийся ИИ -агент. Эту систему я создавал полтора года, и в ней почти 80 000 строк кода: она использует лучшее из всего, что я знаю.

Индивидуальная разработка:

Помимо готовых решений, я адаптирую любые модели из научных статей под конкретные задачи клиентов. Создаю торговых роботов на заказ с учетом специфических требований, интегрирую современные методы машинного обучения и провожу консультации по алгоритмической торговле.

Полезные ссылки:

Группа по ИИ трейдингу: https://vk.com/altradinger
Канал по ИИ трейдингу: https://www.mql5.com/ru/channels/aitradinger
Мониторинг: https://share.kz/g7vJ
GitHub: https://github.com/Shtenco
Мой сайт: https://shtencoquantai.tech/

Готов обсудить ваши задачи и предложить оптимальные решения для автоматизации торговли!

Предупреждение о рисках: Торговля на финансовых рынках связана с высоким риском потери средств. Прошлые результаты не гарантируют будущую прибыль.
Yevgeniy Koshtenko
Yevgeniy Koshtenko
Матричная модель обучения с подкреплением - обучается в процессе, получая опыт. Надо загрузить в Маркет - отлично идет)
Yevgeniy Koshtenko
Опубликовал статью Майнинг данных CFTC на Python и ИИ модель на их основе
Майнинг данных CFTC на Python и ИИ модель на их основе

Попробуем смайнить даные CFTC, загрузить отчеты COT и TFF через Python, соединить это с котировками MetaTrader 5 и моделью ИИ и получить прогнозы. Что такое отчеты COT на рынке Форекс? Как использовать отчеты COT и TFF для прогнозирования?

Yevgeniy Koshtenko
Опубликовал статью Майнинг данных балансов центробанков и получение картины мировой ликвидности
Майнинг данных балансов центробанков и получение картины мировой ликвидности

Майнинг данных балансов центробанков позволяет получить картину мировой ликвидности рынка Форекс и ключевых валют. Мы объединяем данные ФРС, ЕЦБ, BOJ и PBoC в композитный индекс и применяем машинное обучение для выявления скрытых закономерностей. Такой подход превращает сырой поток данных в реальные торговые сигналы, соединяя фундаментальный и технический анализ.

Yevgeniy Koshtenko
Yevgeniy Koshtenko
Лучший торговый робот мира - мой! В итоге сейчас в Мидасе 11 прогнозирующих нейросетей, как регрессионных так и классификационных, плюс отдельная мета - надсистема, одна 12-я нейросеть которая обучается на матрице из всех признаков, всех выходов и ошибок всех моделей. В надсистеме анализируется матрица из 5000 столбцов и 100 000 строк данных, всего размерность датасета 500 000 000 единиц данных..

Есть много разных модулей: и анализ трендов, и анализ объёмов, и анализ реальных объёмов валютных фьючерсов и опционов Чикаго, и анализ позиций хэдж-фондов, и анализ балансов и трендов балансов мировых центробанков включая ЕЦБ и ФРС, и анализ более 2500 экономических показателей от Евростата, Насдаг Стата и Всемирного банка, хоть как-то влияющих на курс валют. Есть и компьютерное зрение, и использование квантового суперкомпьютера IBM, даже модули анализирующие цены через последовательности Фибоначчи, через нумерологический скор, и через астрологические циклы, это не шутка)

Плюс отдельный модуль, составляющий оптимальный портфель по всём сигналам.

Целевая прибыль должна увеличиться с прошлых 1000 пунктов в день, как минимум до 1200-1300 пунктов в сутки.

35000 строк кода. Это лучший робот мира. Midas!
Yevgeniy Koshtenko
Опубликовал статью Индикатор CAPM модели на рынке Forex
Индикатор CAPM модели на рынке Forex

Адаптация классической модели CAPM для валютного рынка Forex в MQL5. Индикатор рассчитывает ожидаемую доходность и премию за риск на основе исторической волатильности. Показатели возрастают на пиках и впадинах, отражая фундаментальные принципы ценообразования. Практическое применение для контртрендовых и трендовых стратегий с учетом динамики соотношения риска и доходности в реальном времени. Включает математический аппарат и техническую реализацию.

Yevgeniy Koshtenko
Опубликовал статью Индикатор прогнозирования ARIMA на MQL5
Индикатор прогнозирования ARIMA на MQL5

В данной статье мы создаем индикатор прогнозирования ARIMA на MQL5. Рассматривается, как модель ARIMA формирует прогнозы, её применимость к рынку Форекс и фондовому рынку в целом. Также объясняется, что такое авторегрессия AR, каким образом авторегрессионные модели используются для прогнозирования, и как работает механизм авторегрессии.

Yevgeniy Koshtenko
Yevgeniy Koshtenko
Долгосрочный портфель по модулю Мидаса по портфельной теории + своп фактору. Каждый день капает своп.
Yevgeniy Koshtenko
Yevgeniy Koshtenko
Сегодня минус -0,16%
Yevgeniy Koshtenko
Yevgeniy Koshtenko
Сигналы Мидаса на сегодня. Горизонт прогноза - плюс минус 24 часовых бара. Распределение лотов по портфельной теории Марковица)
Yevgeniy Koshtenko
Yevgeniy Koshtenko
Чистая доходность вчерашних сигналов Мидаса +1,1% без плеча. Или около 1000 пунктов (10 000 пипсов). Можете проверить сами)
Yevgeniy Koshtenko
Yevgeniy Koshtenko
Сигналы на Форекс от 5 модулей Мидаса на понедельник. Тут далеко не все модули - я пересобираю систему.
Yevgeniy Koshtenko
Опубликовал статью Самообучающийся советник с нейросетью на матрице состояний
Самообучающийся советник с нейросетью на матрице состояний

Самообучающийся советник с нейросетью на матрице состояний. Совмещаем марковские цепи с многослойной нейросетью MLP, написанной на библиотеке ALGLIB MQL5. Как могут быть совмещены для прогнозирования Форекс марковские цепи и нейросети?

Yevgeniy Koshtenko
Опубликовал статью Матричная модель прогнозирования на марковской цепи
Матричная модель прогнозирования на марковской цепи

Создаем матричную модель прогнозирования на марковской цепи. Что такое марковские цепи, и как можно использовать марковскую цепь для трейдинга на Форекс.

Yevgeniy Koshtenko
Опубликовал статью Компьютерное зрение для трейдинга (Часть 2): Усложняем архитектуру до 2D-анализа RGB-изображений
Компьютерное зрение для трейдинга (Часть 2): Усложняем архитектуру до 2D-анализа RGB-изображений

Компьютерное зрение для трейдинга, как работает и как разрабатывается по шагам. Создаем алгоритм распознавания RGB-изображений графиков цен с механизмом внимания и двунаправленным LSTM-слоем. В результате получаем рабочую модель прогнозирования цены евро-доллара с точностью до 55% на валидационном участке.

Yevgeniy Koshtenko
Yevgeniy Koshtenko
Ура! Мне дали доступ к базе SEC (Комиссии по ценным бумагам и биржам США).

Теперь мне доступны любые отчёты по всем позициям всех фондов крупнее 100 млн. $.

Это для нового модуля Мидаса.

Следующая статья будет посвящена анализу связей между движениями капитала мировых фондов и изменениями цен на бирже.
Aleksandr Seredin
Aleksandr Seredin 2025.05.12
Круто! Это очень мощная идея. Жду новую статью с нетерпением. )))
Yevgeniy Koshtenko
Опубликовал статью Количественный анализ трендов: Собираем статистику на Python
Количественный анализ трендов: Собираем статистику на Python

Что такое количественный анализ трендов на рынке Форекс. Собираем статистику по трендам, их величине и распределению по валютной паре EURUSD. Как количественный анализ трендов поможет создать прибыльный торговый советник.

Yevgeniy Koshtenko
Опубликовал статью Арбитражный трейдинг Forex: Матричная торговая система на возврат к справедливой стоимости с ограничением риска
Арбитражный трейдинг Forex: Матричная торговая система на возврат к справедливой стоимости с ограничением риска

Статья содержит детальное описание алгоритма расчета кросс-курсов, визуализацию матрицы дисбалансов и рекомендации по оптимальной настройке параметров MinDiscrepancy и MaxRisk для эффективной торговли. Система автоматически рассчитывает "справедливую стоимость" каждой валютной пары через кросс-курсы, генерируя сигналы на покупку при отрицательных отклонениях, и на продажу — при положительных.

Yevgeniy Koshtenko
Опубликовал статью Компьютерное зрение для трейдинга (Часть 1): Создаем базовый простой функционал
Компьютерное зрение для трейдинга (Часть 1): Создаем базовый простой функционал

Система прогнозирования EURUSD с применением компьютерного зрения и глубокого обучения. Узнайте, как сверточные нейронные сети могут распознавать сложные ценовые паттерны на валютном рынке и предсказывать движение курса с точностью до 54%. Статья раскрывает методологию создания алгоритма, использующего технологии искусственного интеллекта для визуального анализа графиков вместо традиционных технических индикаторов. Автор демонстрирует процесс трансформации ценовых данных в «изображения», их обработку нейронной сетью и уникальную возможность заглянуть в «сознание» ИИ через карты активации и тепловые карты внимания. Практический код на Python с использованием библиотеки MetaTrader 5 позволяет читателям воспроизвести систему и применить ее в собственной торговле.

Yevgeniy Koshtenko
Опубликовал статью Прогнозируем Ренко — бары при помощи ИИ CatBoost
Прогнозируем Ренко — бары при помощи ИИ CatBoost

Как использовать Ренко-бары вместе с ИИ? Рассмотрим Ренко-трейдинг на Форекс с точностью прогнозов до 59.27%. Исследуем преимущества Ренко-баров для фильтрации рыночного шума, узнаем, почему объемные показатели важнее ценовых паттернов, и как настроить оптимальный размер блока Ренко для EURUSD. Пошаговое руководство по интеграции CatBoost, Python и MetaTrader 5 для создания собственной системы прогнозирования Ренко Форекс. Идеально для трейдеров, стремящихся выйти за рамки традиционного технического анализа.

Yevgeniy Koshtenko
Yevgeniy Koshtenko
Видите маленькие пополнения счета ? Это - ребейты (награда за торговый оборот).

Небольшой процентник капает на счет каждую ночь, это своего рода кэшбек от брокера за активную торговлю роботов.

Каждому кто приобретает акционные версии роботов - я могу настроить такого рода ребейт с прямым переводом ребейта на счет каждую ночь.

По процентам чисто с ребейтов за апрель вышло + 0,75%, плюс еще роботы сами набили +12,52% на все пополнения.

Принцип прост - постоянно пополняем счет, роботы постоянно набивают прибыль на все пополнения, ребейты также увеличиваются. Дальше в систему вступает его величество сложный процент, который и выводит вас на финансовую свободу. Наш с женой пассивный доход от инвестиций за год уже впервые превысил 1 млн. тенге, это около 20 000 рублей полностью пассивно - ежемесячно. Но прибылью мы не пользуемся, а реинвестируем и пускаем в работу - хоть через 10 лет пожить как миллиардеры))))

Всего накопительных счетов сейчас 11 - это и вклады, и депозиты, и брокерские счета в РФ / Казахстане, и криптобиржи, и брокерские счета у Форекс - дилеров.

Главная суть системы: контролировать расходы, чтобы тратить не все, то что не потратили, запускаем в инвестиции, и они уже создают нам капитал на дистанции.