Descargar MetaTrader 5

Distribución beta no central

En este apartado se muestran las funciones para trabajar con la distribución beta no central. Estas permiten calcular la densidad, la probabilidad, los cuantiles y generar números pseudoaleatorios, distribuidos  conforme a la ley consiguiente. La distribución beta no central se describe con la siguiente fórmula:

pdf_noncentral_beta_distribution

donde:

  • x – valor de la magnitud aleatoria
  • а – primer parámetro de la distribución beta
  • b – segundo parámetro de la distribución beta
  • λ – parámetro de no-centralidad

DemoNoncentralBeta

Aparte del cálculo de diferentes magnitudes aleatorias, se ha implementado la posibilidad de trabajar con sus matrices.  

Función

Descripción

MathProbabilityDensityNoncentralBeta

Calcula la densidad de probabilidad  de la distribución beta no central

MathCumulativeDistributionNoncentralBeta

Calcula el valor de la función de la distribución beta no central de la probabilidad

MathQuantileNoncentralBeta

Calcula el valor de la función inversa de la distribución beta no central para la probabilidad indicada

MathRandomNoncentralBeta

Genera una magnitud/matriz pseudoaleatoria de magnitudes pseudoaleatorias, distribuidas según la ley de la distribución beta no central

MathMomentsNoncentralBeta

Calcula los valores numéricos teóricos de los 4 primeros momentos de la distribución beta no central

Ejemplo:

#include <Graphics\Graphic.mqh>
#include <Math\Stat\NoncentralBeta.mqh>
#include <Math\Stat\Math.mqh>
#property script_show_inputs
//--- input parameters
input double a_par=2;    // primer parámetro de la distribución beta (shape1)
input double b_par=5;    // segundo parámetro de la distribución beta (shape2)
input double l_par=1;    // parámetro de no-centralidad (lambda)
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
void OnStart()
  {
//--- desactivamos la exhibición del gráfico de precio
   ChartSetInteger(0,CHART_SHOW,false);
//--- inicializamos el generador de números aleatorios  
   MathSrand(GetTickCount());
//--- generamos una muestra de la magnitud aleatoria
   long chart=0;
   string name="GraphicNormal";
   int n=1000000;       // número de valores en la muestra
   int ncells=53;       // número de intervalos en el histograma
   double x[];          // centros de los intervalos del histograma
   double y[];          // número de valores de la muestra que han entrado en el intervalo
   double data[];       // muestra de valores aleatorios 
   double max,min;      // valor máximo y mínimo en la muestra
//--- obtenemos la muestra de la distribución beta no central
   MathRandomNoncentralBeta(a_par,b_par,l_par,n,data);
//--- calculamos los datos para construir el histograma
   CalculateHistogramArray(data,x,y,max,min,ncells);
//--- obtenemos los límites de la secuencia y el salto para construir la curva teórica
   double step;
   GetMaxMinStepValues(max,min,step);
   step=MathMin(step,(max-min)/ncells);
//--- obtenemos los datos calculados teóricamente en el intervalo [min,max]
   double x2[];
   double y2[];
   MathSequence(min,max,step,x2);
   MathProbabilityDensityNoncentralBeta(x2,a_par,b_par,l_par,false,y2);
//--- escalamos
   double theor_max=y2[ArrayMaximum(y2)];
   double sample_max=y[ArrayMaximum(y)];
   double k=sample_max/theor_max;
   for(int i=0; i<ncells; i++)
      y[i]/=k;
//--- mostramos el gráfico
   CGraphic graphic;
   if(ObjectFind(chart,name)<0)
      graphic.Create(chart,name,0,0,0,780,380);
   else
      graphic.Attach(chart,name);
   graphic.BackgroundMain(StringFormat("Noncentral Beta distribution alpha=%G beta=%G lambda=%G",
                          a_par,b_par,l_par));
   graphic.BackgroundMainSize(16);
//--- plot all curves
   graphic.CurveAdd(x,y,CURVE_HISTOGRAM,"Sample").HistogramWidth(6);
//--- y ahora construimos la curva teórica de la densidad de la distribución
   graphic.CurveAdd(x2,y2,CURVE_LINES,"Theory");
   graphic.CurvePlotAll();
//--- plot all curves
   graphic.Update();
  }
//+------------------------------------------------------------------+
//|  Calculate frequencies for data set                              |
//+------------------------------------------------------------------+
bool CalculateHistogramArray(const double &data[],double &intervals[],double &frequency[],
                             double &maxv,double &minv,const int cells=10)
  {
   if(cells<=1) return (false);
   int size=ArraySize(data);
   if(size<cells*10) return (false);
   minv=data[ArrayMinimum(data)];
   maxv=data[ArrayMaximum(data)];
   double range=maxv-minv;
   double width=range/cells;
   if(width==0) return false;
   ArrayResize(intervals,cells);
   ArrayResize(frequency,cells);
//--- establecemos los centros de los intervalos
   for(int i=0; i<cells; i++)
     {
      intervals[i]=minv+(i+0.5)*width;
      frequency[i]=0;
     }
//--- rellenamos las frecuencias de entrada en el intervalo
   for(int i=0; i<size; i++)
     {
      int ind=int((data[i]-minv)/width);
      if(ind>=cells) ind=cells-1;
      frequency[ind]++;
     }
   return (true);
  }
//+------------------------------------------------------------------+
//|  Calculates values for sequence generation                       |
//+------------------------------------------------------------------+
void GetMaxMinStepValues(double &maxv,double &minv,double &stepv)
  {
//--- calculamos la amplitud absoluta de la secuencia, para obtener la precisión de normalización
   double range=MathAbs(maxv-minv);
   int degree=(int)MathRound(MathLog10(range));
//--- normalizamos los valores máximos y mínimos con la precisión establecida
   maxv=NormalizeDouble(maxv,degree);
   minv=NormalizeDouble(minv,degree);
//--- el salto de generación de la secuencia también lo estableceremos a partir de la precisión indicada
   stepv=NormalizeDouble(MathPow(10,-degree),degree);
   if((maxv-minv)/stepv<10)
      stepv/=10.;
  }