MetaTrader 5 herunterladen

Nichtzentrale Betaverteilung

In diesem Abschnitt sind Funktionen für die nichtzentrale Betaverteilung beschrieben. Mit diesen Funktionen können Dichte, Wahrscheinlichkeit und Quantile berechnet und Pseudozufallszahlen auf Basis der Betaverteilung erzeugt werden. Die nichtzentrale Betaverteilung wird mit der folgenden Formel berechnet:

pdf_noncentral_beta_distribution

wobei:

  • x – der Wert der Zufallsvariablen
  • a – der erste Parameter der Betaverteilung
  • b – der zweite Parameter der Betaverteilung
  • λ – Parameter der Nichtzentralität

DemoNoncentralBeta

Man kann sowohl einzelne Zufallsvariablen berechnen, als auch mit Arrays von Zufallsvariablen arbeiten.  

Funktion

Beschreibung

MathProbabilityDensityNoncentralBeta

Berechnet den Wert der Wahrscheinlichkeitsdichtefunktion der nichtzentralen Betaverteilung

MathCumulativeDistributionNoncentralBeta

Berechnet den Wert der Wahrscheinlichkeitsverteilung der nichtzentralen Betaverteilung

MathQuantileNoncentralBeta

Berechnet den Wert der Umkehrfunktion der Wahrscheinlichkeitsverteilung der nichtzentralen Betaverteilung für eine angegebene Wahrscheinlichkeit

MathRandomNoncentralBeta

Erzeugt ein Pseudozufallszahl/ein Array für Pseudozufallszahlen auf Basis der nichtzentrale Betaverteilung

MathMomentsNoncentralBeta

Berechnet die theoretischen, numerischen Werte der ersten 4 Momente der nichtzentralen Betaverteilung

Beispiel:

#include <Graphics\Graphic.mqh>
#include <Math\Stat\NoncentralBeta.mqh>
#include <Math\Stat\Math.mqh>
#property script_show_inputs
//--- input parameters
input double a_par=2;    // der erste Parameter der Beta-Verteilung (shape1)
input double b_par=5;    // der zweite Parameter der Beta-Verteilung (shape2)
input double l_par=1;    // Parameter der Nichtzentralität (lambda)
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
void OnStart()
  {
//--- Anzeige des Preischarts deaktivieren
   ChartSetInteger(0,CHART_SHOW,false);
//---  
   MathSrand(GetTickCount());
//--- Stichprobe einer zufälligen Größe erzeugen
   long chart=0;
   string name="GraphicNormal";
   int n=1000000;       // Anzahl der Werte in der Stichprobe
   int ncells=53;       // Anzahl der Intervalle im Histogramm
   double x[];          // Zentren der Intervalle des Histogramms
   double y[];          // Anzahl der Werte aus der Stichprobe, die innerhalb des Intervalls liegen
   double data[];       // Stichprobe 
   double max,min;      // der höchste und der niedrigste Werte in der Stichprobe
//--- Stichprobe aus der nichtzentralen Beta-Verteilung erhalten
   MathRandomNoncentralBeta(a_par,b_par,l_par,n,data);
//--- Daten für das Zeichnen des Histogramms berechnen
   CalculateHistogramArray(data,x,y,max,min,ncells);
//--- Grenzen der Sequenz und Schritt für das Zeichnen einer theoretischen Kurve erhalten
   double step;
   GetMaxMinStepValues(max,min,step);
   step=MathMin(step,(max-min)/ncells);
//--- theoretisch berechnete Daten im Intervall [min,max] erhalten
   double x2[];
   double y2[];
   MathSequence(min,max,step,x2);
   MathProbabilityDensityNoncentralBeta(x2,a_par,b_par,l_par,false,y2);
//--- skalieren
   double theor_max=y2[ArrayMaximum(y2)];
   double sample_max=y[ArrayMaximum(y)];
   double k=sample_max/theor_max;
   for(int i=0; i<ncells; i++)
      y[i]/=k;
//--- Charts ausgeben
   CGraphic graphic;
   if(ObjectFind(chart,name)<0)
      graphic.Create(chart,name,0,0,0,780,380);
   else
      graphic.Attach(chart,name);
   graphic.BackgroundMain(StringFormat("Noncentral Beta distribution alpha=%G beta=%G lambda=%G",
                          a_par,b_par,l_par));
   graphic.BackgroundMainSize(16);
//--- plot all curves
   graphic.CurveAdd(x,y,CURVE_HISTOGRAM,"Sample").HistogramWidth(6);
//--- und nun die theoretische Kurve der Verteilungsdichte zeichnen
   graphic.CurveAdd(x2,y2,CURVE_LINES,"Theory");
   graphic.CurvePlotAll();
//--- plot all curves
   graphic.Update();
  }
//+------------------------------------------------------------------+
//|  Calculate frequencies for data set                              |
//+------------------------------------------------------------------+
bool CalculateHistogramArray(const double &data[],double &intervals[],double &frequency[],
                             double &maxv,double &minv,const int cells=10)
  {
   if(cells<=1) return (false);
   int size=ArraySize(data);
   if(size<cells*10) return (false);
   minv=data[ArrayMinimum(data)];
   maxv=data[ArrayMaximum(data)];
   double range=maxv-minv;
   double width=range/cells;
   if(width==0) return false;
   ArrayResize(intervals,cells);
   ArrayResize(frequency,cells);
//--- Zentren der Intervalle setzen
   for(int i=0; i<cells; i++)
     {
      intervals[i]=minv+(i+0.5)*width;
      frequency[i]=0;
     }
//--- Frequenzen des Auftretens innerhalb des Intervalls füllen
   for(int i=0; i<size; i++)
     {
      int ind=int((data[i]-minv)/width);
      if(ind>=cells) ind=cells-1;
      frequency[ind]++;
     }
   return (true);
  }
//+------------------------------------------------------------------+
//|  Calculates values for sequence generation                       |
//+------------------------------------------------------------------+
void GetMaxMinStepValues(double &maxv,double &minv,double &stepv)
  {
//--- die absolute Spannweite der Sequenz berechnen, um die Genauigkeit der Normalisierung zu erhalten
   double range=MathAbs(maxv-minv);
   int degree=(int)MathRound(MathLog10(range));
//--- den höchsten und den niedrigsten Wert mit der angegebenen Genauigkeit normalisieren
   maxv=NormalizeDouble(maxv,degree);
   minv=NormalizeDouble(minv,degree);
//--- den Schritt der Erzeugung einer Sequenz auch basierend auf der angegebenen Genauigkeit setzen
   stepv=NormalizeDouble(MathPow(10,-degree),degree);
   if((maxv-minv)/stepv<10)
      stepv/=10.;
  }