Wie bereits im theoretischen Teil erläutert, müssen wir bei der Arbeit mit neuronalen Netzen lineare Regressionen und Ableitungen verwenden. Warum? Der Grund dafür ist, dass die lineare Regression eine der einfachsten Formeln ist, die es gibt. Im Grunde genommen ist die lineare Regression nur eine affine Funktion. Wenn wir über neuronale Netze sprechen, sind wir jedoch nicht an den Auswirkungen der direkten linearen Regression interessiert. Wir interessieren uns für die Gleichung, die diese Linie erzeugt. Wir sind nicht so sehr an der erstellten Linie interessiert. Kennen Sie die wichtigste Gleichung, die wir verstehen müssen? Wenn nicht, empfehle ich, diesen Artikel zu lesen, um ihn zu verstehen.