Gamuchirai Zororo Ndawana / プロファイル
- 情報
|
2 年
経験
|
6
製品
|
24
デモバージョン
|
|
0
ジョブ
|
0
シグナル
|
0
購読者
|
より良い結果をより速く得る方法を知りたい場合は、正しい場所にいます。
私の無料の専門アドバイザーのいずれかで始めるか、知識に飢えている場合は私のいくつかの出版物を読むことができます。
何を待っているのですか?成功への終身のパートナーシップはここから始まります。
Email: patriolbw@gmail.com
This article revisits the classic moving average crossover strategy and examines why it often fails in noisy, fast-moving markets. It presents five alternative filtering methods designed to strengthen signal quality and remove weak or unprofitable trades. The discussion highlights how statistical models can learn and correct the errors that human intuition and traditional rules miss. Readers leave with a clearer understanding of how to modernize an outdated strategy and of the pitfalls of relying solely on metrics like RMSE in financial modeling.
This article shows how to configure a black-box model to automatically uncover strong trading strategies using a data-driven approach. By using Mutual Information to prioritize the most learnable signals, we can build smarter and more adaptive models that outperform conventional methods. Readers will also learn to avoid common pitfalls like overreliance on surface-level metrics, and instead develop strategies rooted in meaningful statistical insight.
This article demonstrates how to automatically identify potentially profitable trading strategies using MetaTrader 5. White-box solutions, powered by unsupervised matrix factorization, are faster to configure, more interpretable, and provide clear guidance on which strategies to retain. Black-box solutions, while more time-consuming, are better suited for complex market conditions that white-box approaches may not capture. Join us as we discuss how our trading strategies can help us carefully identify profitable strategies under any circumstance.
All algorithmic trading strategies are difficult to set up and maintain, regardless of complexity—a challenge shared by beginners and experts alike. This article introduces an ensemble framework where supervised models and human intuition work together to overcome their shared limitations. By aligning a moving average channel strategy with a Ridge Regression model on the same indicators, we achieve centralized control, faster self-correction, and profitability from otherwise unprofitable systems.
This article helps new community members search for and discover their own candlestick patterns. Describing these patterns can be daunting, as it requires manually searching and creatively identifying improvements. Here, we introduce the engulfing candlestick pattern and show how it can be enhanced for more profitable trading applications.
In this discussion, we focus on how we can break the glass ceiling imposed by classical machine learning techniques in finance. It appears that the greatest limitation to the value we can extract from statistical models does not lie in the models themselves — neither in the data nor in the complexity of the algorithms — but rather in the methodology we use to apply them. In other words, the true bottleneck may be how we employ the model, not the model’s intrinsic capability.
Linear system identifcation may be coupled to learn to correct the error in a supervised learning algorithm. This allows us to build applications that depend on statistical modelling techniques without necessarily inheriting the fragility of the model's restrictive assumptions. Classical supervised learning algorithms have many needs that may be supplemented by pairing these models with a feedback controller that can correct the model to keep up with current market conditions.
In this discussion, we contrast the classical approach to time series cross-validation with modern alternatives that challenge its core assumptions. We expose key blind spots in the traditional method—especially its failure to account for evolving market conditions. To address these gaps, we introduce Effective Memory Cross-Validation (EMCV), a domain-aware approach that questions the long-held belief that more historical data always improves performance.
Trading strategies may be challenging to improve because we often don’t fully understand what the strategy is doing wrong. In this discussion, we introduce linear system identification, a branch of control theory. Linear feedback systems can learn from data to identify a system’s errors and guide its behavior toward intended outcomes. While these methods may not provide fully interpretable explanations, they are far more valuable than having no control system at all. Let’s explore linear system identification and observe how it may help us as algorithmic traders to maintain control over our trading applications.
In this series of articles, we look at the challenges faced by algorithmic traders when deploying machine-learning-powered trading strategies. Some challenges within our community remain unseen because they demand deeper technical understanding. Today’s discussion acts as a springboard toward examining the blind spots of cross-validation in machine learning. Although often treated as routine, this step can easily produce misleading or suboptimal results if handled carelessly. This article briefly revisits the essentials of time series cross-validation to prepare us for more in-depth insight into its hidden blind spots.
This article walks the reader through a reimagined version of the classical Bollinger Band breakout strategy. It identifies key weaknesses in the original approach, such as its well-known susceptibility to false breakouts. The article aims to introduce a possible solution: the Double Bollinger Band trading strategy. This relatively lesser known approach supplements the weaknesses of the classical version and offers a more dynamic perspective on financial markets. It helps us overcome the old limitations defined by the original rules, providing traders with a stronger and more adaptive framework.
Machine learning is often viewed through statistical or linear algebraic lenses, but this article emphasizes a geometric perspective of model predictions. It demonstrates that models do not truly approximate the target but rather map it onto a new coordinate system, creating an inherent misalignment that results in irreducible error. The article proposes that multi-step predictions, comparing the model’s forecasts across different horizons, offer a more effective approach than direct comparisons with the target. By applying this method to a trading model, the article demonstrates significant improvements in profitability and accuracy without changing the underlying model.
前処理は非常に強力でありながら、しばしば軽視されがちな調整パラメータです。その存在は、より注目されるオプティマイザーや華やかなモデル構造の影に隠れています。しかし、前処理のわずかな改善は、利益やリスクに対して予想以上に大きな複利効果をもたらすことがあります。あまりにも多くの場合、このほとんど未踏の領域は単なるルーチン作業として扱われ、手段としてしか意識されません。しかし実際には、前処理は信号を直接増幅することもあれば、容易に破壊してしまうこともあるのです。
本記事では、モデルがおこなうすべての予測に密かに影響を与える、隠れた幾何学的誤差の源に新たな視点を提供します。取引における機械学習予測の評価方法と活用法を再考することで、従来見過ごされてきたこの視点が、より鋭い意思決定、より高いリターン、そして、すでに理解していると思っていたモデルをより賢く活用する道を開くことを示します。
金融市場は本質的に予測が難しく、過去には利益が出ていたように見える取引戦略でも、実際の市場環境では破綻することが少なくありません。主な原因は、ほとんどの戦略が一度展開されると振る舞いが固定され、失敗から学習したり適応したりできないということです。そこで制御理論の考え方を取り入れることで、フィードバックコントローラを用いて戦略と市場の相互作用を観察し、その挙動を収益性に向けて調整することが可能になります。今回の結果では、単純な移動平均戦略にフィードバックコントローラを導入するだけで、利益の向上、リスクの低減、効率の改善が見られ、このアプローチが取引用途において大きな可能性を持つことが示されました。
コンピュータが登場する以前から、人間のトレーダーは長年にわたり金融市場に参加し、意思決定を導く経験則を培ってきました。本記事では、よく知られたブレイクアウト戦略を再検証し、こうした経験から得られた市場ロジックがシステマティックな手法に対抗し得るのかをテストします。結果として、元の戦略は高い精度を示した一方で、不安定性とリスク管理の弱さが明らかになりました。そこで本記事ではアプローチを改良し、裁量的な洞察をより堅牢なアルゴリズム取引戦略へと適応する方法を示します。
本記事では、アルゴリズム取引における行列分解の強力な役割、特にMQL5アプリケーション内での活用について探ります。回帰モデルからマルチターゲット分類器まで、実際の例を通して、これらの手法が組み込みのMQL5関数を使ってどれほど容易に統合できるかを示します。価格の方向性を予測する場合でも、インジケーターの挙動をモデル化する場合でも、このガイドは行列手法を用いたインテリジェントな取引システム構築の強固な基盤を提供します。
本記事では、MQL5の行列・ベクトルAPIで利用できる強力な線形代数ツールの基礎を解説します。このAPIを効果的に利用するためには、これらの手法を賢く活用するための線形代数の原理をしっかり理解しておく必要があります。本稿は、MQL5でアルゴリズム取引をおこなう際にこの強力なライブラリを活用して作業を開始するために必要となる線形代数の最も重要な規則のいくつかを、読者が直感的に理解できるレベルで身につけることを目的としています。
行列分解は、データの特性を理解するために用いられる数学的手法です。行と列で整理された大規模な市場データに行列分解を適用することで、市場のパターンや特性を明らかにすることができます。行列分解は非常に強力なツールであり、本記事ではMetaTrader 5のターミナル内でMQL5 APIを活用し、市場データをより深く分析する方法を紹介します。
本記事では、取引戦略のアンサンブル構築と、MT5遺伝的最適化を用いた戦略パラメータの調整について、引き続き検討していきます。本日はPythonでデータを分析し、モデルがどの戦略が優れているかをより正確に予測でき、市場リターンを直接予測するよりも高い精度を達成できることを示しました。しかし、統計モデルを用いてアプリケーションをテストしたところ、パフォーマンスは著しく低下しました。その後、遺伝的最適化が相関性の高い戦略を優先していたことが判明し、私たちは投票の重みを固定し、インジケーター設定の最適化に焦点を当てるよう方法を修正しました。