Dmitriy Gizlyk
Dmitriy Gizlyk
4.4 (50)
  • 信息
11+ 年
经验
0
产品
0
演示版
134
工作
0
信号
0
订阅者
任何的MT4和MT5複雜專業寫作計劃。
Dmitriy Gizlyk
已发布文章Neural Networks in Trading: Transformer for the Point Cloud (Pointformer)
Neural Networks in Trading: Transformer for the Point Cloud (Pointformer)

In this article, we will talk about algorithms for using attention methods in solving problems of detecting objects in a point cloud. Object detection in point clouds is important for many real-world applications.

3
Dmitriy Gizlyk
已发布文章Neural Networks in Trading: Hierarchical Feature Learning for Point Clouds
Neural Networks in Trading: Hierarchical Feature Learning for Point Clouds

We continue to study algorithms for extracting features from a point cloud. In this article, we will get acquainted with the mechanisms for increasing the efficiency of the PointNet method.

2
Dmitriy Gizlyk
已发布文章Neural Networks in Trading: Point Cloud Analysis (PointNet)
Neural Networks in Trading: Point Cloud Analysis (PointNet)

Direct point cloud analysis avoids unnecessary data growth and improves the performance of models in classification and segmentation tasks. Such approaches demonstrate high performance and robustness to perturbations in the original data.

2
Kamilla Sayfutdinova
Kamilla Sayfutdinova 2024.09.02
Было бы интересно послушать ваше мнение о модели LSTM
Dmitriy Gizlyk
已发布文章Neural Networks in Trading: Hierarchical Vector Transformer (Final Part)
Neural Networks in Trading: Hierarchical Vector Transformer (Final Part)

We continue studying the Hierarchical Vector Transformer method. In this article, we will complete the construction of the model. We will also train and test it on real historical data.

2
Dmitriy Gizlyk
已发布文章Neural Networks in Trading: Hierarchical Vector Transformer (HiVT)
Neural Networks in Trading: Hierarchical Vector Transformer (HiVT)

We invite you to get acquainted with the Hierarchical Vector Transformer (HiVT) method, which was developed for fast and accurate forecasting of multimodal time series.

2
Dmitriy Gizlyk
已发布文章Neural Networks in Trading: Unified Trajectory Generation Model (UniTraj)
Neural Networks in Trading: Unified Trajectory Generation Model (UniTraj)

Understanding agent behavior is important in many different areas, but most methods focus on just one of the tasks (understanding, noise removal, or prediction), which reduces their effectiveness in real-world scenarios. In this article, we will get acquainted with a model that can adapt to solving various problems.

2
Dmitriy Gizlyk
已发布文章交易中的神经网络:一种复杂的轨迹预测方法(Traj-LLM)
交易中的神经网络:一种复杂的轨迹预测方法(Traj-LLM)

在本文中,我想向您介绍一种为解决自动驾驶领域问题而开发的有趣的轨迹预测方法。该方法的作者结合了各种架构解决方案的最佳元素。

Dmitriy Gizlyk
已发布文章交易中的神经网络:状态空间模型
交易中的神经网络:状态空间模型

到目前为止,我们审阅的大量模型都是基于变换器架构。不过,在处理长序列时,它们或许效率低下。在本文中,我们将领略一种替代方向,即基于状态空间模型的时间序列预测。

Dmitriy Gizlyk
已发布文章交易中的神经网络:将全局信息注入独立通道(InjectTST)
交易中的神经网络:将全局信息注入独立通道(InjectTST)

大多数现代多模态时间序列预测方法都采用了独立通道方式。这忽略了同一时间序列不同通道的天然依赖性。巧妙地运用两种方式(独立通道和混合通道),是提高模型性能的关键。

Dmitriy Gizlyk
已发布文章交易中的神经网络:TEMPO 方法的实施结果
交易中的神经网络:TEMPO 方法的实施结果

我们继续领略 TEMPO 方法。在本文中,我们将评估所提议方法在真实历史数据上的真实有效性。

Dmitriy Gizlyk
已发布文章交易中的神经网络:使用语言模型进行时间序列预测
交易中的神经网络:使用语言模型进行时间序列预测

我们继续研究时间序列预测模型。在本文中,我们领略一种建立在预训练语言模型基础上的复杂算法。

Dmitriy Gizlyk
已发布文章交易中的神经网络:用于时间序列预测的轻量级模型
交易中的神经网络:用于时间序列预测的轻量级模型

轻量级时间序列预测模型使用最少的参数数量实现高性能。这反过来减少了计算资源的消耗并加快了决策速度。尽管是轻量级的,这些模型实现了与更复杂模型相当的预测质量。

Dmitriy Gizlyk
已发布文章交易中的神经网络:通过Adam-mini优化减少内存消耗
交易中的神经网络:通过Adam-mini优化减少内存消耗

提高模型训练和收敛效率的一个方向是改进优化方法。Adam-mini是一种自适应优化方法,旨在改进基础的Adam算法。

Dmitriy Gizlyk
已发布文章交易中的神经网络:时空神经网络(STNN)
交易中的神经网络:时空神经网络(STNN)

在本文中,我们将谈及使用时空变换来有效预测即将到来的价格走势。为了提高 STNN 中的数值预测准确性,提出了一种连续注意力机制,令模型能够更好地参考数据的重要方面。

Dmitriy Gizlyk
已发布文章交易中的神经网络:基于双注意力的趋势预测模型
交易中的神经网络:基于双注意力的趋势预测模型

我们继续讨论时间序列的分段线性表示的运用,这在前一篇文章中已经开始。今天,我们要看看如何将该方法与其它时间序列分析方法相结合,从而提高价格趋势预测品质。

Dmitriy Gizlyk
已发布文章交易中的神经网络:时间序列的分段线性表示
交易中的神经网络:时间序列的分段线性表示

这篇文章与我以前发表的有些不同。在本文中,我们将谈谈时间序列的另类表示。时间序列的分段线性表示是一种利用涵盖小间隔的线性函数逼近时间序列的方法。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 97 部分):搭配 MSFformer 训练模型
神经网络变得简单(第 97 部分):搭配 MSFformer 训练模型

在探索各种模型架构设计时,我们往往对模型训练过程的关注投入不足。在本文中,我旨在弥补这一差距。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 96 部分):多尺度特征提取(MSFformer)
神经网络变得简单(第 96 部分):多尺度特征提取(MSFformer)

高效提取与集成长期依赖关系和短期特征,仍然是时间序列分析中的一项重要任务。它们的正确理解及整合,对于创建准确可靠的预测模型是必要的。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 95 部分):降低变换器模型中的内存消耗
神经网络变得简单(第 95 部分):降低变换器模型中的内存消耗

基于变换器架构的模型展现出高效率,但由于在训练阶段、及运行期间都资源成本高昂,故它们的使用变得复杂。在本文中,我提议领略那些能够降低此类模型内存占用的算法。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 94 部分):优化输入序列
神经网络变得简单(第 94 部分):优化输入序列

在处理时间序列时,我们始终按其历史序列使用源数据。但这是最好的选项吗?有一种观点认为,改变输入数据顺序将提高训练模型的效率。在本文中,我邀请您领略其中一种优化输入序列的方法。