Dmitriy Gizlyk
Dmitriy Gizlyk
4.4 (50)
  • 信息
12+ 年
经验
0
产品
0
演示版
134
工作
0
信号
0
订阅者
任何的MT4和MT5複雜專業寫作計劃。
Dmitriy Gizlyk
已发布文章神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法
神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

本文介绍了最初是为天气预报而开发的“构象(Conformer)”算法,其变化多端之处可与金融市场相提并论。“构象(Conformer)”是一种复杂的方法。它结合了关注度模型和常微分方程的优点。

Look Mode
Look Mode 2024.03.30
Здравствуйте, как эти файлы попробовать (тестировать) из файлы Comformer?
Dmitriy Gizlyk
已发布文章神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)
神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)

在本文中,我们将讨论另一种模型类型,它们旨在研究环境状态的动态。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 81 部分):上下文引导运动分析(CCMR)
神经网络变得简单(第 81 部分):上下文引导运动分析(CCMR)

在以前的工作中,我们总是评估环境的当前状态。与此同时,指标变化的动态始终保持在“幕后”。在本文中,我打算向您介绍一种算法,其允许您评估 2 个连续环境状态数据之间的直接变化。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 80 部分):图形变换器生成式对抗模型(GTGAN)
神经网络变得简单(第 80 部分):图形变换器生成式对抗模型(GTGAN)

在本文中,我将领略 GTGAN 算法,该算法于 2024 年 1 月推出,是为解决依据图形约束生成架构布局的复杂问题。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)
神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

在上一篇文章中,我们领略了一种从图像中检测对象的方法。不过,处理静态图像与处理动态时间序列(例如我们所分析的价格动态)有些不同。在本文中,我们将研究检测视频中对象的方法,其可在某种程度上更接近我们正在解决的问题。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 78 部分):带有变换器的无解码对象检测器(DFFT)
神经网络变得简单(第 78 部分):带有变换器的无解码对象检测器(DFFT)

在本文中,我提议从不同的角度看待构建交易策略的问题。我们不会预测未来的价格走势,但会尝试基于历史数据分析构建交易系统。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 77 部分):交叉协方差变换器(XCiT)
神经网络变得简单(第 77 部分):交叉协方差变换器(XCiT)

在我们的模型中,我们经常使用各种关注度算法。而且,可能我们最常使用变换器。它们的主要缺点是资源需求。在本文中,我们将研究一种新算法,它可以帮助降低计算成本,而不会降低品质。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 76 部分):配合多未来变换器探索不同的交互形态
神经网络变得简单(第 76 部分):配合多未来变换器探索不同的交互形态

本文继续探讨预测即将到来的价格走势的主题。我邀请您领略多未来变换器架构。其主要思路是把未来的多模态分布分解为若干个单模态分布,这样就可以有效地模拟场景中个体之间互动的各种模态。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 75 部分):提升轨迹预测模型的性能
神经网络变得简单(第 75 部分):提升轨迹预测模型的性能

我们创建的模型变得越来越大,越来越复杂。这不光提高了它们的训练成本,还有操作成本。不过,做出决定所需的时间往往很关键。有关于此,我们来研究在不损失品质的情况下优化模型性能的方法。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 74 部分):自适应轨迹预测
神经网络变得简单(第 74 部分):自适应轨迹预测

本文介绍了一种相当有效的多个体轨迹预测方法,其可适配各种环境条件。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 73 部分):价格走势预测 AutoBot
神经网络变得简单(第 73 部分):价格走势预测 AutoBot

我们将继续讨论训练轨迹预测模型的算法。在本文中,我们将领略一种称为 “AutoBots” 的方法。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 72 部分):噪声环境下预测轨迹
神经网络变得简单(第 72 部分):噪声环境下预测轨迹

预测未来状态的品质在“目标条件预测编码”方法中扮演着重要角色,我们曾在上一篇文章中讨论过。在本文中,我想向您介绍一种算法,它可以显著提高随机环境(例如金融市场)中的预测品质。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 71 部分):目标条件预测编码(GCPC)
神经网络变得简单(第 71 部分):目标条件预测编码(GCPC)

在之前的文章中,我们讨论了决策转换器方法,以及从其衍生的若干种算法。我们测验了不同的目标设定方法。在测验期间,我们依据各种设定目标的方式进行操作。然而,该模型早期研究时验算过的轨迹,始终处于我们的关注范围之外。在这篇文章中。我想向您介绍一种填补此空白的方法。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 70 部分):封闭式政策改进运算器(CFPI)
神经网络变得简单(第 70 部分):封闭式政策改进运算器(CFPI)

在本文中,我们将领略一种算法,其使用封闭式政策改进运算器来优化离线模式下的智能体动作。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 69 部分):基于密度的行为政策支持约束(SPOT)
神经网络变得简单(第 69 部分):基于密度的行为政策支持约束(SPOT)

在离线学习中,我们使用固定的数据集,这限制了环境多样性的覆盖范围。在学习过程中,我们的 Agent 能生成超出该数据集之外的动作。如果没有来自环境的反馈,我们如何判定针对该动作的估测是正确的?在训练数据集中维护 Agent 的政策成为确保训练可靠性的一个重要方面。这就是我们将在本文中讨论的内容。

JimReaper
JimReaper 2023.12.22
Hi Dmitriy, seems like the article is incomplete.
Dmitriy Gizlyk
已发布文章神经网络变得简单(第 68 部分):离线优先引导政策优化
神经网络变得简单(第 68 部分):离线优先引导政策优化

自从第一篇专门讨论强化学习的文章以来,我们以某种方式触及了 2 个问题:探索环境和检定奖励函数。最近的文章曾专门讨论了离线学习中的探索问题。在本文中,我想向您介绍一种算法,其作者完全剔除了奖励函数。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 67 部分):按照过去的经验解决新任务
神经网络变得简单(第 67 部分):按照过去的经验解决新任务

在本文中,我们将继续讨论收集数据至训练集之中的方法。显然,学习过程需要与环境不断互动。不过,状况可能会有所不同。

JimReaper
JimReaper 2023.12.09
THIS IS GENIUS WORK Dmitriy! I Love this!
Dmitriy Gizlyk
已发布文章神经网络变得简单(第 66 部分):离线学习中的探索问题
神经网络变得简单(第 66 部分):离线学习中的探索问题

使用准备好的训练数据集中的数据对模型进行离线训练,这种方法虽然有一定的优势,但其不利的一面是,环境信息被大大压缩到训练数据集的大小。这反过来又限制了探索的可能性。在本文中,我们将探讨一种方法,这种方法可以用尽可能多样化的数据来填充训练数据集。

JimReaper
JimReaper 2023.12.05
You are the best! Thank you so much for your research. Beautifully done.!
Dmitriy Gizlyk
已发布文章神经网络变得简单(第 65 部分):距离加权监督学习(DWSL)
神经网络变得简单(第 65 部分):距离加权监督学习(DWSL)

在本文中,我们将领略一个有趣的算法,它是在监督和强化学习方法的交叉点上构建的。

Dmitriy Gizlyk
已发布文章神经网络变得简单(第 64 部分):保守加权行为克隆(CWBC)方法
神经网络变得简单(第 64 部分):保守加权行为克隆(CWBC)方法

据前几篇文章中所执行测试的结果,我们得出的结论是,训练策略的最优性很大程度上取决于所采用的训练集。在本文中,我们将熟悉一种相当简单,但有效的方法来选择轨迹,并据其训练模型。