Dmitriy Gizlyk
Dmitriy Gizlyk
4.4 (50)
  • 信息
12+ 年
经验
0
产品
0
演示版
134
工作
0
信号
0
订阅者
任何的MT4和MT5複雜專業寫作計劃。
Dmitriy Gizlyk
已发布文章交易中的神经网络:具有层化记忆的智代(终篇)
交易中的神经网络:具有层化记忆的智代(终篇)

我们继续致力于创建 FinMem 框架,其采用层化记忆方式,即模拟人类认知过程。这令该模型不仅能有效处理复杂的财务数据,还能适应新信号,显著提升了在动态变化市场中投资决策的准确性和有效性。

Dmitriy Gizlyk
已发布文章交易中的神经网络:具有层化记忆的智代
交易中的神经网络:具有层化记忆的智代

模仿人类认知过程的层化记忆方式令复杂金融数据的处理、以及适配新信号成为可能,因此在动态市场中提升投资决策的有效性。

Dmitriy Gizlyk
已发布文章交易中的神经网络:使用小波变换和多任务注意力的模型(终篇)
交易中的神经网络:使用小波变换和多任务注意力的模型(终篇)

在上一篇文章中,我们探索了理论基础,并开始实现多任务-Stockformer 框架的方式,其结合了小波变换和自注意力多任务模型。我们继续实现该框架的算法,并评估其在真实历史数据上的有效性。

Dmitriy Gizlyk
已发布文章交易中的神经网络:使用小波变换和多任务注意力的模型
交易中的神经网络:使用小波变换和多任务注意力的模型

我们邀请您探索一个结合小波变换和多任务自注意力模型的框架,旨在提高波动市场条件下预测的响应能力、和准确性。小波变换可将资产回报分解为高频和低频,精心捕捉长期市场趋势、和短期波动。

Dmitriy Gizlyk
已发布文章交易中的神经网络:搭配预测编码的混合交易框架(终篇)
交易中的神经网络:搭配预测编码的混合交易框架(终篇)

我们继续研习 StockFormer 混合交易系统,其结合了预测编码和强化学习算法,来分析金融时间序列。该系统基于三个变换器分支,搭配多样化多头注意力(DMH-Attn)机制,能够捕获资产之间的复杂形态、和相互依赖关系。之前,我们已领略了该框架的理论层面,并实现了 DMH-Attn 机制。今天,我们就来聊聊模型架构和训练。

Dmitriy Gizlyk
已发布文章交易中的神经网络:具有预测编码的混合交易框架(StockFormer)
交易中的神经网络:具有预测编码的混合交易框架(StockFormer)

在本文中,我们将讨论混合交易系统 StockFormer,其结合了预测编码和强化学习(RL)算法。该框架用到 3 个变换器分支,集成了多样化多头注意力(DMH-Attn)机制,改进了原版的注意力模块,采用多头前馈模块,能够捕捉不同子空间中的多元化时间序列形态。

Dmitriy Gizlyk
已发布文章交易中的神经网络:配备注意力机制(MASAAT)的智代融汇(终章)
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇(终章)

在上一篇文章中,我们讲述了多智代自适应框架 MASAAT,其用一组智代的融汇在不同数据尺度下对多模态时间序列进行交叉分析。今天我们将继续实现该框架方法的 MQL5 版本,并将这项工作带至逻辑完结。

Dmitriy Gizlyk
已发布文章交易中的神经网络:配备注意力机制(MASAAT)的智代融汇
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇

我们概述多智代自适应投资组合优化框架(MASAAT),其结合了注意力机制和时间序列分析。MASAAT 生成一组智代,分析价格序列和方向变化,能够在不同细节层次识别资产价格的明显波动。

Dmitriy Gizlyk
已发布文章交易中的神经网络:多智代自适应模型(终篇)
交易中的神经网络:多智代自适应模型(终篇)

在上一篇文章中,我们讲述了多智代自适应框架 MASA,它结合了强化学习方法和自适应策略,在动荡的市场条件下提供了盈利能力、及风险之间的和谐平衡。我们已在该框架内构建了单个智代的功能。在本文中,我们继续我们已开始的工作,令其得出合乎逻辑的结论。

Dmitriy Gizlyk
已发布文章交易中的神经网络:多智代自适应模型(MASA)
交易中的神经网络:多智代自适应模型(MASA)

我邀您领略多智代自适应(MASA)框架,其结合了强化学习和自适应策略,在动荡市场条件下提供盈利能力、及风险管理之间的和谐均衡。

Dmitriy Gizlyk
已发布文章交易中的神经网络:搭配区段注意力的参数效率变换器(终篇)
交易中的神经网络:搭配区段注意力的参数效率变换器(终篇)

在之前的工作中,我们讨论了 PSformer 框架的理论层面,其中包括经典变换器架构的两大创新:参数共享(PS)机制,以及时空区段注意力(SegAtt)。在本文中,我们继续实现所提议方式的 MQL5 版本。

Dmitriy Gizlyk
已发布文章交易中的神经网络:搭配区段注意力的参数效率变换器(PSformer)
交易中的神经网络:搭配区段注意力的参数效率变换器(PSformer)

本文讲述新的 PSformer 框架,其适配雏形变换器架构,解决与多元时间序列预测相关的问题。该框架基于两项关键创新:参数共享(PS)机制,和区段注意力(SegAtt)。

youwei_qing
youwei_qing 2025.04.21
I noticed that the feedForward method with the second input parameter isn't working at all. Could this be an issue? virtual bool feedForward(CNeuronBaseOCL *NeuronOCL); virtual bool feedForward(CNeuronBaseOCL *NeuronOCL, CBufferFloat *SecondInput) { return feedForward(NeuronOCL); }
Dmitriy Gizlyk
已发布文章交易中的神经网络:降低锐度强化变换器效率(终章)
交易中的神经网络:降低锐度强化变换器效率(终章)

SAMformer 为长期时间序列预测中变换器模型的主要缺点,譬如训练复杂性,及小型数据集的普适能力差,提供了解决方案。其浅层架构和锐度感知优化有助于避免次优的局部最小值。在本文中,我们将继续利用 MQL5 实现方式,并评估其实用价值。

Dmitriy Gizlyk
已发布文章交易中的神经网络:降低锐度强化变换器效率(SAMformer)
交易中的神经网络:降低锐度强化变换器效率(SAMformer)

训练变换器模型需要大量数据,并且往往很困难,因为模型不擅长类推到小型数据集。SAMformer 框架通过避免糟糕的局部最小值来帮助解决这个问题。即使在有限的训练数据集上,也能提升模型的效率。

Dmitriy Gizlyk
已发布文章交易中的神经网络:优化时间序列预测变换器(LSEAttention)
交易中的神经网络:优化时间序列预测变换器(LSEAttention)

LSEAttention 框架改进变换器架构。它是专为长期多变量时间序列预测而设计。该方法作者提议的方法能应用于解决雏形变换器经常遇到的熵坍缩、及学习不稳定问题。

Dmitriy Gizlyk
已发布文章交易中的神经网络:双曲型潜在扩散模型(终篇)
交易中的神经网络:双曲型潜在扩散模型(终篇)

正如 HypDIff 框架所提议,使用各向异性扩散过程针对双曲潜在空间中的初始数据进行编码,助力保留当前市场状况的拓扑特征,并提升其分析品质。在上一篇文章中,我们开始利用 MQL5 实现所提议的方式。今天,我们将继续我们已开始的工作,并得出合乎逻辑的结论。

Dmitriy Gizlyk
已发布文章交易中的神经网络:双曲型潜在扩散模型(HypDiff)
交易中的神经网络:双曲型潜在扩散模型(HypDiff)

本文研究经由各向异性扩散过程在双曲型潜在空间中编码初始数据的方法。这有助于更准确地保留当前市场状况的拓扑特征,并提升其分析品质。

Dmitriy Gizlyk
已发布文章交易中的神经网络:定向扩散模型(DDM)
交易中的神经网络:定向扩散模型(DDM)

在本文中,我们讨论定向扩散模型,其利用数据相关的各向异性、和定向噪声,在前向扩散过程中捕获有意义的图形表征。

Dmitriy Gizlyk
已发布文章交易中的神经网络:节点-自适应图形表征(NAFS)
交易中的神经网络:节点-自适应图形表征(NAFS)

我们邀请您领略 NAFS(节点-自适应特征平滑)方法,这是一种创建节点表征的非参数方法,不需要参数训练。NAFS 提取每个给定节点的邻域特征,然后把这些特征自适应组合,从而形成最终表征。

Dmitriy Gizlyk
已发布文章交易中的神经网络:对比形态变换器(终章)
交易中的神经网络:对比形态变换器(终章)

在本系列的上一篇文章中,我们考察了“原子-基序对比变换器”(AMCT)框架,其用对比学习来发现各个级别的关键形态,从基本元素到复杂结构。在本文中,我们将继续利用 MQL5 实现 AMCT 方式。