На форуме появилось 5 новых тем:
- Как вы решили проблему Закона "О валютном регулировании и валютном контроле"? Запрещено получать оплату
- Ошибки/вопросы по терминалу МТ5
- Проверка достаточности средств
В статье рассмотрим работу со структурами торговых запросов — для создания запроса, его предварительной проверки перед отправкой на сервер, ответ сервера на торговый запрос и структуру торговых транзакций. Создадим простые удобные функции для отправки торговых приказов на сервер и, на основе всего рассмотренного, создадим советник-информер о торговых транзакциях.
| Прирост: | 321.09 | % |
| Средства: | 83,126.78 | USD |
| Баланс: | 84,236.20 | USD |
| Прирост: | 118.21 | % |
| Средства: | 2,167,906.47 | USD |
| Баланс: | 2,182,102.89 | USD |
Возможности СhatGPT от OpenAI в контексте разработки на языках MQL4 и MQL5
В данной статье мы будем экспериментировать и разбираться с искусственным интеллектом ChatGPT от OpenAI, для того чтобы понять его возможности с целью уменьшения времени и трудоемкости разработки ваших советников, индикаторов и скриптов. Я быстро пройдусь по данной технологии и постараюсь показать вам, как правильно её использовать для программирования на языках MQL4 и MQL5.

Как купить торгового робота в MetaTrader Market и установить его?
Каждый продукт в Маркете MetaTrader можно купить и через торговые платформы MetaTrader 4 и MetaTrader 5, и прямо на сайте MQL5.com. Выберите продукт, который лучше всего подходит под ваш стиль работы, оплатите его удобным для вас способом и не забудьте активировать.

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?
Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.
По мере обучения модели на базе буфера воспроизведения опыта текущая политика Актера все больше отдаляется от сохраненных примеров, что снижает эффективность обучения модели в целом. В данной статье мы рассмотрим алгоритм повышения эффективности использования образцов в алгоритмах обучения с подкреплением.
В этой статье мы продолжаем разработку класса CArima для построения моделей ARIMA, добавляя интуитивно понятные методы прогнозирования.
Модель движения цены и ее основные положения. (Часть 3): Расчет оптимальных параметров биржевой игры
В рамках разработанного автором инженерного подхода, основанного на теории вероятности, находятся условия открытия прибыльной позиции и рассчитываются оптимальные – максимализирующие прибыль - значения тейкпрофита и стоплосса.
Брутфорс-подход к поиску закономерностей (Часть V): Взгляд с другой стороны
В статье я покажу совершенно иной подход к алготрейдингу, к которому мне пришлось прийти спустя достаточно длительное время. Конечно же все это связано с моей брутфорс программой, которая претерпела ряд изменений, которые позволяют ей решать одновременно несколько задач. Тем не менее статья получилась больше общей и максимально простой, по этому годится и для тех кто не в теме или просто проходил мимо.

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?
Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.
Основная цель статьи — предоставить простой пошаговый путь, пройдя по которому вы сможете стать лучшим поставщиком сигналов на MQL5.com. Опираясь на свои знания и опыт, я объясню, что нужно, чтобы стать успешным поставщиком сигналов, в том числе, как найти, протестировать и оптимизировать хорошую стратегию. Кроме того, я дам советы по публикации вашего сигнала, написанию убедительного описания и эффективному продвижению и управлению.
Статья продолжает серию о реализации теории категорий в MQL5. Здесь мы рассматриваем группы моноидов как средство, нормализующее множества моноидов и делающее их более сопоставимыми в более широком диапазоне множеств моноидов и типов данных.
В последних двух статьях рассматривался алгоритм Soft Actor-Critic, который включает энтропийную регуляризацию в функцию вознаграждения. Этот подход позволяет балансировать исследование среды и эксплуатацию модели, но он применим только к стохастическим моделям. В данной статье рассматривается альтернативный подход, который применим как для стохастических, так и для детерминированных моделей.