Ищи нас в Facebook!
Ставь лайки и следи за новостями

Используй новые возможности MetaTrader 5

Последние статьи на MQL5.com

Опубликована статья "Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Тестирование и результаты".

Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Тестирование и результаты

В этой статье мы продолжим изучение алгоритма искусственного пчелиного улья ABHA, углубляясь в написание кода и рассматривая оставшиеся методы. Напомним, что каждая пчела в модели представлена как индивидуальный агент, чье поведение зависит от внутренней и внешней информации, а также мотивационного состояния. Мы проведем тестирование алгоритма на различных функциях и подведем итоги, представив результаты в рейтинговой таблице.

Самые читаемые статьи за месяц

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

Как купить торгового робота в MetaTrader Market и установить его?

Как купить торгового робота в MetaTrader Market и установить его?

Каждый продукт в Маркете MetaTrader можно купить и через торговые платформы MetaTrader 4 и MetaTrader 5, и прямо на сайте MQL5.com. Выберите продукт, который лучше всего подходит под ваш стиль работы, оплатите его удобным для вас способом и не забудьте активировать.

Нейросети в трейдинге: Кусочно-линейное представление временных рядов

Нейросети в трейдинге: Кусочно-линейное представление временных рядов

Эта статья несколько отличается от предыдущих работ данной серии. В ней мы поговорим об альтернативном представлении временных рядов. Кусочно-линейное представление временных рядов — это метод аппроксимации временного ряда с помощью линейных функций на небольших интервалах.

Опубликована статья "Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Теория и методы".

Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Теория и методы

В статье мы познакомимся с алгоритмом искусственного пчелиного улья (ABHA), разработанным в 2009 году. Алгоритм направлен на решение задач непрерывной оптимизации. Мы рассмотрим, как ABHA черпает вдохновение из поведения пчелиной колонии, где каждая пчела выполняет уникальную роль, что способствует более эффективному поиску ресурсов.

Опубликована статья "Нейросети в трейдинге: Инъекция глобальной информации в независимые каналы (InjectTST)".

Нейросети в трейдинге: Инъекция глобальной информации в независимые каналы (InjectTST)

Большинство современных методов прогнозирования мультимодальных временных рядов используют подход независимых каналов. Тем самым игнорируется природная зависимость различных каналов одного временного ряда. Разумное использование 2 подходов (независимых и смешанных каналов) является ключом к повышению эффективности моделей.

Опубликована статья "Теория хаоса в трейдинге (Часть 2): Продолжаем погружение".

Теория хаоса в трейдинге (Часть 2): Продолжаем погружение

Продолжаем погружение в теорию хаоса на финансовых рынках, и рассмотрим ее применимость к анализу валют и иных активов.

Опубликована статья "Изучение MQL5 — от новичка до профи (Часть IV): О массивах, функциях и глобальных переменных терминала".

Изучение MQL5 — от новичка до профи (Часть IV): О массивах, функциях и глобальных переменных терминала

Статья является продолжением цикла для начинающих. В ней подробно рассказано о массивах данных, взаимодействии данных и функций, а также о глобальных переменных терминала, позволяющих обмениваться данными между разными MQL5 программами.

Самые читаемые статьи за неделю

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

Разрабатываем мультивалютный советник (Часть 15): Готовим советник к реальной торговле

Разрабатываем мультивалютный советник (Часть 15): Готовим советник к реальной торговле

Постепенно приближаясь к получению готового советника, необходимо уделить внимание вопросам, которые являются второстепенными на этапе тестирования торговой стратегии, но становятся важными при переходе к реальной торговле.

Нейросети в трейдинге: "Легкие" модели прогнозирования временных рядов

Нейросети в трейдинге: "Легкие" модели прогнозирования временных рядов

Легковесные модели прогнозирования временных рядов обеспечивают высокую производительность, используя минимальное количество параметров. Что, в свою очередь, снижает расход вычислительных ресурсов и ускоряет принятие решений. При этом они достигают качества прогнозов, сопоставимого с более сложными моделями.

На сайте доступно более 1,690 статей

Опубликована статья "Нейросети в трейдинге: Практические результаты метода TEMPO".

Нейросети в трейдинге: Практические результаты метода TEMPO

Продолжаем знакомство с методом TEMPO. И в данной статье мы оценим фактическую эффективность предложенных подходов на реальных исторических данных.

Опубликована статья "Разработка системы репликации (Часть 43): Проект Chart Trade (II)".

Разработка системы репликации (Часть 43): Проект Chart Trade (II)

Большинство людей, которые хотят или мечтают научиться программировать, на самом деле не имеют представления о том, что делают. Их деятельность заключается в попытках создавать вещи определенным образом. Однако программирование – это вовсе не подгонка под ответ подходящих решений. Если действовать таким образом, можно создать больше проблем, чем решений. Здесь мы будем делать нечто более продвинутое и, следовательно, другое.

Опубликована статья "Возможности Мастера MQL5, которые вам нужно знать (Часть 14): Многоцелевое прогнозирование таймсерий с помощью STF".

Возможности Мастера MQL5, которые вам нужно знать (Часть 14): Многоцелевое прогнозирование таймсерий с помощью STF

Пространственно-временное слияние (Spatial Temporal Fusion, STF), которое использует как "пространственные", так и временные метрики при моделировании данных, в первую очередь применяется в дистанционном обследовании и во многих других областях, связанных с визуализацией, для лучшего понимания нашего окружения. Основываясь на опубликованной статье, мы изучим потенциал этого подхода для трейдеров.

Опубликована статья "Машинное обучение и Data Science (Часть 21): Сравниваем алгоритмы оптимизации в нейронных сетях".

Машинное обучение и Data Science (Часть 21): Сравниваем алгоритмы оптимизации в нейронных сетях

В этой статье мы заглянем в самую глубь нейронных сетей и поговорим об используемых в них алгоритмах оптимизации. В частности обсудим ключевые методы, которые позволяют раскрыть потенциал нейронных сетей и повысить точность и эффективность моделей.

Опубликована статья "Разрабатываем мультивалютный советник (Часть 16): Влияние разных историй котировок на результаты тестирования".

Разрабатываем мультивалютный советник (Часть 16): Влияние разных историй котировок на результаты тестирования

Разрабатываемый советник должен показывать хорошие результаты при торговле у разных брокеров. Но мы пока что для тестов использовали котировки с демо-счёта от MetaQuotes. Посмотрим, готов ли наш советник к работе на торговом счёте с другими котировками по сравнению с теми, которые использовались при тестировании и оптимизации.

Самые читаемые статьи за месяц

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

Как купить торгового робота в MetaTrader Market и установить его?

Как купить торгового робота в MetaTrader Market и установить его?

Каждый продукт в Маркете MetaTrader можно купить и через торговые платформы MetaTrader 4 и MetaTrader 5, и прямо на сайте MQL5.com. Выберите продукт, который лучше всего подходит под ваш стиль работы, оплатите его удобным для вас способом и не забудьте активировать.

Разработка торгового робота на Python (Часть 3): Реализация торгового алгоритма на основе модели

Разработка торгового робота на Python (Часть 3): Реализация торгового алгоритма на основе модели

Продолжаем цикл статей по созданию торгового робота на Python и MQL5. Сегодня решим задачу создания торгового алгоритма на Python.

Опубликована статья "Возможности Мастера MQL5, которые вам нужно знать (Часть 13): DBSCAN для класса сигналов советника".

Возможности Мастера MQL5, которые вам нужно знать (Часть 13): DBSCAN для класса сигналов советника

Основанная на плотности пространственная кластеризация для приложений с шумами (Density Based Spatial Clustering for Applications with Noise, DBSCAN) - это неконтролируемая форма группировки данных, которая практически не требует каких-либо входных параметров, за исключением всего двух, что по сравнению с другими подходами, такими как k-средние, является преимуществом. Разберемся в том, как это может быть полезно в тестировании и торговле с применением советников, собранных в Мастере.

Опубликована статья "Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов".

Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов

Мы продолжаем рассмотрения моделей прогнозирования временных рядов. И в данной статье я предлагаю познакомиться с комплексным алгоритмом, построенным на использовании предварительно обученной языковой модели.

Самые читаемые статьи за неделю

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

Нейросети в трейдинге: Пространственно-временная нейронная сеть (STNN)

Нейросети в трейдинге: Пространственно-временная нейронная сеть (STNN)

В данной статье мы поговорим об использовании пространственно-временных преобразований для эффективного прогнозирования предстоящего ценового движения. Для повышения точности численного прогнозирования в STNN был предложен механизм непрерывного внимания, который позволяет модели лучше учитывать важные аспекты данных.

Как купить торгового робота в MetaTrader Market и установить его?

Как купить торгового робота в MetaTrader Market и установить его?

Каждый продукт в Маркете MetaTrader можно купить и через торговые платформы MetaTrader 4 и MetaTrader 5, и прямо на сайте MQL5.com. Выберите продукт, который лучше всего подходит под ваш стиль работы, оплатите его удобным для вас способом и не забудьте активировать.

Опубликована статья "Фильтр сезонности и временные периоды в моделях глубокого обучения с ONNX и Python в советнике".

Фильтр сезонности и временные периоды в моделях глубокого обучения с ONNX и Python в советнике

Можем ли мы извлечь выгоду из сезонности при создании моделей для глубокого обучения с помощью Python? Помогает ли фильтрация данных в моделях ONNX получить лучшие результаты? Какой период времени использовать? Обо всем этом расскажем в этой статье.

Опубликована статья "Нейросети в трейдинге: "Легкие" модели прогнозирования временных рядов".

Нейросети в трейдинге: "Легкие" модели прогнозирования временных рядов

Легковесные модели прогнозирования временных рядов обеспечивают высокую производительность, используя минимальное количество параметров. Что, в свою очередь, снижает расход вычислительных ресурсов и ускоряет принятие решений. При этом они достигают качества прогнозов, сопоставимого с более сложными моделями.

Опубликована статья "Создаем простой мультивалютный советник с использованием MQL5 (Часть 7): Сигналы индикаторов ZigZag и Awesome Oscillator".

Создаем простой мультивалютный советник с использованием MQL5 (Часть 7): Сигналы индикаторов ZigZag и Awesome Oscillator

Под мультивалютным советником в этой статье понимается советник, или торговый робот, который использует индикаторы ZigZag и Awesome Oscillator, фильтрующие сигналы друг друга.

Опубликована статья "Введение в MQL5 (Часть 5): Функции для работы с массивами для начинающих".

Введение в MQL5 (Часть 5): Функции для работы с массивами для начинающих

В пятой статье из нашей серии мы познакомимся с миром массивов в MQL5. Статья предназначена для начинающих. В статье попытаемся упрощенно рассмотреть сложные концепции программирования, чтобы материал был понятен всем. Давайте вместе будем изучать основные концепции, обсуждать вопросы и делиться знаниями!

На сайте доступно более 1,680 статей

Опубликована статья "Мониторинг торговли с помощью Push-уведомлений — пример сервиса в MetaTrader 5".

Мониторинг торговли с помощью Push-уведомлений — пример сервиса в MetaTrader 5

В статье рассмотрим создание программы сервиса для отправки уведомлений на смартфон о результатах торговли. В рамках статьи научимся работать со списками объектов Стандартной Библиотеки для организации выборки объектов по требуемым свойствам.

Опубликована статья "Расширенные переменные и типы данных в MQL5".

Расширенные переменные и типы данных в MQL5

Переменные и типы данных — очень важные темы не только в программировании на MQL5, но и в любом языке программирования. Переменные и типы данных MQL5 можно разделить на простые и расширенные. Здесь мы рассмотрим расширенные переменные и типы данных. Простые мы изучали в предыдущей статье.

Опубликована статья "Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Двухфазная эволюция".

Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Двухфазная эволюция

Эта статья является продолжением темы социального поведения живых организмов и его воздействия на разработку новой математической модели - ASBO (Adaptive Social Behavior Optimization). Мы погрузимся в двухфазную эволюцию, проведем тестирование алгоритма и сделаем выводы. Подобно тому, как в природе группа живых организмов объединяет свои усилия для выживания, ASBO использует принципы коллективного поведения для решения сложных задач оптимизации.

Опубликована статья "Разработка системы репликации (Часть 42): Проект Chart Trade (I)".

Разработка системы репликации (Часть 42): Проект Chart Trade (I)

Давайте создадим что-нибудь поинтереснее. Не хочу портить сюрприз, поэтому следите за статьей, чтобы лучше понять. С самого начала этой серии о разработке системы репликации/моделирования, я говорил, что идея состоит в том, чтобы использовать платформу MetaTrader 5 одинаково как в разрабатываемой нами системе, так и на реальном рынке. Важно, чтобы это было сделано должным образом. Никто не хочет тренироваться и учиться сражаться, используя одни инструменты, в то время как во время боя ему придется пользоваться другими.

Опубликована статья "Теория хаоса в трейдинге (Часть 1): Введение, применение на финансовых рынках и индикатор Ляпунова".

Теория хаоса в трейдинге (Часть 1): Введение, применение на финансовых рынках и индикатор Ляпунова

Можно ли применять теорию хаоса на финансовых рынках? Чем классическая теория Хаоса и хаотические системы отличаются от концепции, предложенной Биллом Вильямсом, рассмотрим в этой статье.

Самые читаемые статьи за месяц

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

Как купить торгового робота в MetaTrader Market и установить его?

Как купить торгового робота в MetaTrader Market и установить его?

Каждый продукт в Маркете MetaTrader можно купить и через торговые платформы MetaTrader 4 и MetaTrader 5, и прямо на сайте MQL5.com. Выберите продукт, который лучше всего подходит под ваш стиль работы, оплатите его удобным для вас способом и не забудьте активировать.

Алгорим оптимизации химическими реакциями — Chemical reaction optimisation, CRO (Часть I): Химия процессов в оптимизации

Алгорим оптимизации химическими реакциями — Chemical reaction optimisation, CRO (Часть I): Химия процессов в оптимизации

В первой части данной статьи мы окунемся в мир химических реакций и откроем новый подход к оптимизации! Метод оптимизации химическими реакциями (CRO) использует для достижения эффективных результатов принципы, определяемые законами термодинамики. Мы раскроем секреты декомпозиции, синтеза и других химических процессов, которые стали основой этого инновационного метода.

Опубликована статья "Разработка MQTT-клиента для MetaTrader 5: методология TDD (Часть 6)".

Разработка MQTT-клиента для MetaTrader 5: методология TDD (Часть 6)

Статья является шестой частью серии, описывающей этапы разработки нативного MQL5-клиента для протокола MQTT 5.0. В этой части я опишу основные изменения в нашем первом рефакторинге, получение рабочего проекта наших классов построения пакетов, создание пакетов PUBLISH и PUBACK, а также семантику кодов причин PUBACK.

Опубликована статья "Разрабатываем мультивалютный советник (Часть 15): Готовим советник к реальной торговле".

Разрабатываем мультивалютный советник (Часть 15): Готовим советник к реальной торговле

Постепенно приближаясь к получению готового советника, необходимо уделить внимание вопросам, которые являются второстепенными на этапе тестирования торговой стратегии, но становятся важными при переходе к реальной торговле.

Опубликована статья "Нейросети в трейдинге: Снижение потребления памяти методом оптимизации Adam (Adam-mini)".

Нейросети в трейдинге: Снижение потребления памяти методом оптимизации Adam (Adam-mini)

Одним из направлений повышения эффективности процесса обучения и сходимости моделей является улучшение методов оптимизации. Adam-mini представляет собой адаптивный метод оптимизации, разработанный для улучшения базового алгоритма Adam.

Самые читаемые статьи за неделю

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

Нейросети в трейдинге: Модель двойного внимания для прогнозирования трендов

Нейросети в трейдинге: Модель двойного внимания для прогнозирования трендов

Продолжаем разговор об использовании кусочно-линейного представления временных рядов, начатый в предыдущей статье. И сегодня мы поговорим о комбинировании данного метода с другими подходами к анализу временных рядов для повышения качества прогнозирования трендов ценовых движений.

Торговля спредами на рынке форекс с использованием фактора сезонности

Торговля спредами на рынке форекс с использованием фактора сезонности

В статье рассматриваются возможности формирования и предоставления отчетных данных по использованию фактора сезонности при торговле спредами на рынке форекс.

Опубликована статья "Изучение MQL5 — от новичка до профи (Часть III): Сложные типы данных и подключаемые файлы".

Изучение MQL5 — от новичка до профи (Часть III): Сложные типы данных и подключаемые файлы

Статья является третьей в серии материалов об основных аспектах программирования на MQL5. Здесь описываются сложные типы данных, которые не были описаны в предыдущей статье, включая структуры, объединения, классы и тип данных "функция". Также рассказано, как добавить модульности нашей программе с помощью директивы препроцессора #include.

Опубликована статья "Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Метод Швефеля, Бокса-Мюллера".

Алгоритм адаптивного социального поведения — Adaptive Social Behavior Optimization (ASBO): Метод Швефеля, Бокса-Мюллера

Эта статья представляет увлекательное погружение в мир социального поведения живых организмов и его влияние на создание новой математической модели — ASBO (Adaptive Social Behavior Optimization). Мы рассмотрим, как принципы лидерства, соседства и сотрудничества, наблюдаемые в обществах живых существ, вдохновляют разработку инновационных алгоритмов оптимизации.

Опубликована статья "Модифицированный советник Grid-Hedge в MQL5 (Часть III): Оптимизация простой хеджирующей стратегии (I)".

Модифицированный советник Grid-Hedge в MQL5 (Часть III): Оптимизация простой хеджирующей стратегии (I)

В третьей части мы вернемся к советникам Simple Hedge и Simple Grid, разработанным ранее. Теперь мы займемся совершенствованием советника Simple Hedge с помощью математического анализа и подхода грубой силы (brute force) с целью оптимального использования стратегии. Эта статья углубляется в математическую оптимизацию стратегии, закладывая основу для будущего исследования оптимизации на основе кода в последующих частях.

Самые читаемые статьи за месяц

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

Как купить торгового робота в MetaTrader Market и установить его?

Как купить торгового робота в MetaTrader Market и установить его?

Каждый продукт в Маркете MetaTrader можно купить и через торговые платформы MetaTrader 4 и MetaTrader 5, и прямо на сайте MQL5.com. Выберите продукт, который лучше всего подходит под ваш стиль работы, оплатите его удобным для вас способом и не забудьте активировать.

Визуализации сделок на графике (Часть 2): Графическая отрисовка информации

Визуализации сделок на графике (Часть 2): Графическая отрисовка информации

Пишем с нуля скрипт, который сделает удобным выгрузку принт-скринов сделок для анализа торговых входов. На одном графике будет удобно отображаться вся необходимая информация по отдельной сделке, с возможностью прорисовывания разных тайм-фреймов.

На сайте доступно более 1,670 статей

Опубликована статья "Парадигмы программирования (Часть 2): Объектно-ориентированный подход к разработке советника на основе ценовой динамики".

Парадигмы программирования (Часть 2): Объектно-ориентированный подход к разработке советника на основе ценовой динамики

В этой статье мы поговорим о парадигме объектно-ориентированного программирования и ее применении в коде MQL5. Это вторая статья в серии. В ней мы познакомимся с особенностями объектно-ориентированного программирования и рассмотрим практические примеры. В прошлый раз мы написали советник на основе ценовой динамики (Price Action), используя индикатор EMA и свечные данные. Сейчас мы преобразуем его процедурный код в объектно-ориентированный.

Опубликована статья "GIT: Но что это?".

GIT: Но что это?

В этой статье я представлю очень важный инструмент для разработчиков. Если вы не знакомы с GIT, прочтите эту статью, дабы получить представление о том, что он собой представляет, и как его использовать вместе с MQL5.

Опубликована статья "Нейросети в трейдинге: Пространственно-временная нейронная сеть (STNN)".

Нейросети в трейдинге: Пространственно-временная нейронная сеть (STNN)

В данной статье мы поговорим об использовании пространственно-временных преобразований для эффективного прогнозирования предстоящего ценового движения. Для повышения точности численного прогнозирования в STNN был предложен механизм непрерывного внимания, который позволяет модели лучше учитывать важные аспекты данных.

Самые читаемые статьи за неделю

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

Нейросети в трейдинге: Кусочно-линейное представление временных рядов

Нейросети в трейдинге: Кусочно-линейное представление временных рядов

Эта статья несколько отличается от предыдущих работ данной серии. В ней мы поговорим об альтернативном представлении временных рядов. Кусочно-линейное представление временных рядов — это метод аппроксимации временного ряда с помощью линейных функций на небольших интервалах.

Нейросети — это просто (Часть 97): Обучение модели с использованием MSFformer

Нейросети — это просто (Часть 97): Обучение модели с использованием MSFformer

При изучении различных архитектур построения моделей мы мало уделяем внимания процессу обучения моделей. В этой статье я попытаюсь восполнить этот пробел.

Опубликована статья "Проблема разногласий: объяснимость и объяснители в ИИ".

Проблема разногласий: объяснимость и объяснители в ИИ

В этой статье мы будем говорить о проблемах, связанных с объяснителями и объяснимостью в ИИ. Модели ИИ часто принимают решения, которые трудно объяснить. Более того, использование нескольких объяснителей часто приводит к так называемой "проблеме разногласий". А ведь ясное понимание того, как работают модели, является ключевым для повышения доверия к ИИ.

Опубликована статья "Разрабатываем мультивалютный советник (Часть 14): Адаптивное изменение объёмов в риск-менеджере".

Разрабатываем мультивалютный советник (Часть 14): Адаптивное изменение объёмов в риск-менеджере

Разработанный ранее риск-менеджер содержал только базовую функциональность. Попробуем рассмотреть возможные пути его развития, позволяющие повысить торговые результаты без вмешательства в логику торговых стратегий.

Опубликована статья "Алгоритм искусственного электрического поля — Artificial Electric Field Algorithm (AEFA)".

Алгоритм искусственного электрического поля — Artificial Electric Field Algorithm (AEFA)

Статья представляет алгоритм искусственного электрического поля (AEFA), вдохновленный законом Кулона об электростатической силе. Алгоритм моделирует электрические явления для решения сложных задач оптимизации, используя заряженные частицы и их взаимодействие. AEFA демонстрирует уникальные свойства в контексте других алгоритмов, связанных с законами природы.

Опубликована статья "Модель глубокого обучения GRU на Python с использованием ONNX в советнике, GRU vs LSTM".

Модель глубокого обучения GRU на Python с использованием ONNX в советнике, GRU vs LSTM

Статья посвящена разработке модели глубокого обучения GRU ONNX на Python. В практической части мы реализуем эту модель в торговом советнике, а затем сравним работу модели GRU с LSTM (долгой краткосрочной памятью).

Самые читаемые статьи за месяц

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

Как купить торгового робота в MetaTrader Market и установить его?

Как купить торгового робота в MetaTrader Market и установить его?

Каждый продукт в Маркете MetaTrader можно купить и через торговые платформы MetaTrader 4 и MetaTrader 5, и прямо на сайте MQL5.com. Выберите продукт, который лучше всего подходит под ваш стиль работы, оплатите его удобным для вас способом и не забудьте активировать.

Элементы корреляционного анализа в MQL5: Критерий независимости хи-квадрат Пирсона и корреляционное отношение

Элементы корреляционного анализа в MQL5: Критерий независимости хи-квадрат Пирсона и корреляционное отношение

В статье рассматриваются классические инструменты корреляционного анализа. Даются краткие теоретические основы, а также практическая реализация критерия независимости хи-квадрат Пирсона и коэффициента корреляционного отношения.

Опубликована статья "Нейросети в трейдинге: Модель двойного внимания для прогнозирования трендов".

Нейросети в трейдинге: Модель двойного внимания для прогнозирования трендов

Продолжаем разговор об использовании кусочно-линейного представления временных рядов, начатый в предыдущей статье. И сегодня мы поговорим о комбинировании данного метода с другими подходами к анализу временных рядов для повышения качества прогнозирования трендов ценовых движений.

Опубликована статья "Торговля спредами на рынке форекс с использованием фактора сезонности".

Торговля спредами на рынке форекс с использованием фактора сезонности

В статье рассматриваются возможности формирования и предоставления отчетных данных по использованию фактора сезонности при торговле спредами на рынке форекс.

Самые читаемые статьи за неделю

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Сравнение MQL5 и QLUA - почему торговые операции в MQL5 до 28 раз быстрее?

Многие трейдеры зачастую не задумываются над тем, как быстро доходит их заявка до биржи, как долго она там исполняется, и когда наконец-то торговый терминал трейдера узнает о результате торговой операции. Мы обещали дать сравнение скорости торговых операций, ведь никто до нас не делал таких замеров с помощью программ на MQL5 и QLUA.

Нейросети — это просто (Часть 97): Обучение модели с использованием MSFformer

Нейросети — это просто (Часть 97): Обучение модели с использованием MSFformer

При изучении различных архитектур построения моделей мы мало уделяем внимания процессу обучения моделей. В этой статье я попытаюсь восполнить этот пробел.

Разработка торгового робота на Python (Часть 3): Реализация торгового алгоритма на основе модели

Разработка торгового робота на Python (Часть 3): Реализация торгового алгоритма на основе модели

Продолжаем цикл статей по созданию торгового робота на Python и MQL5. Сегодня решим задачу создания торгового алгоритма на Python.

Опубликована статья "Нейросети в трейдинге: Кусочно-линейное представление временных рядов".

Нейросети в трейдинге: Кусочно-линейное представление временных рядов

Эта статья несколько отличается от предыдущих работ данной серии. В ней мы поговорим об альтернативном представлении временных рядов. Кусочно-линейное представление временных рядов — это метод аппроксимации временного ряда с помощью линейных функций на небольших интервалах.

1...171819202122232425262728293031...83