• 情報
no
経験
0
製品
0
デモバージョン
0
ジョブ
0
シグナル
0
購読者
シェアされた作者Roman Klymenkoの記事
長期取引戦略の基盤としてのマルチンゲール
長期取引戦略の基盤としてのマルチンゲール

本稿では、マルチンゲールシステムについて詳細に検討します。このシステムを取引に適用できるかどうか、またリスクを最小限に抑えるための使用方法が検討されます。この単純なシステムの主な欠点は、預金全体を失う可能性があることです。マルチンゲール技術を使って取引することを決定した場合、この事実は考慮に入れられなければなりません。

シェアされた作者Marco Calabreseの記事
ピボット平均オシレータの開発:累積移動平均の新規インジケータ
ピボット平均オシレータの開発:累積移動平均の新規インジケータ

この記事では、MetaTraderプラットフォームのトレードインジケータとして累積移動平均(CMA)であるピボット平均オシレータ(PMO)を紹介します。 特に、データポイントとCMAの間の分数を計算する時系列の正規化インデックスとしてピボット平均(PM)を導入しました。 次に、2つのPMシグナルに適用される移動平均の差としてPMOを構築します。 提案されたインジケータの有効性をテストするためにEURUSDシンボルで行われた予備的な実験も行いましたが、さらなる検討と改善の余地があります。

シェアされた作者Alexander Fedosovの記事
ローソク足分析技術の研究(第4部): パターンアナライザーの更新と追加
ローソク足分析技術の研究(第4部): パターンアナライザーの更新と追加

本稿では、パターンアナライザーアプリケーションの新しいバージョンについて説明します。このバージョンでは、バグ修正と新機能、そして改訂されたユーザーインターフェイスが提供されています。新しいバージョンを開発するときに、前の記事からのコメントと提案が考慮されました。結果として得られたアプリケーションは、この記事で説明されています。

シェアされた作者Roman Korotchenkoの記事
フラクタル指数とハースト指数の財務時系列を予測する能力の評価
フラクタル指数とハースト指数の財務時系列を予測する能力の評価

金融データのフラクタル行動の探索に関する研究は、経済時系列の一見混沌とした行動の背後に、参加者の集団行動の隠されたメカニズムがあることを前提にしています。 これらのメカニズムは、価格シリーズの特性を定義することができ、取引所の価格ダイナミクスの出現につながることができます。 これをトレーディングに適用すると、実際に関連するスケールと時間枠のフラクタルパラメータを効率的かつ確実に推定できるインジケータの恩恵を受けることができます。

シェアされた作者Roman Klymenkoの記事
リバーシング: エントリポイントを形式化し、裁量トレードアルゴリズムを開発する
リバーシング: エントリポイントを形式化し、裁量トレードアルゴリズムを開発する

これは、リバーシングトレード戦略のシリーズの最新の記事です。 ここでは、以前の記事で不安定なテスト結果を引き起こした問題を解決します。 また、リバーシング戦略を使用して、任意の相場で裁量トレードの独自のアルゴリズムを開発し、それをテストします。

シェアされた作者Stanislav Korotkyの記事
時系列の予測(第1部):経験的分解モード(EMD)法
時系列の予測(第1部):経験的分解モード(EMD)法

この記事では、経験的分解モードに基づいて時系列を予測するアルゴリズムの理論と実際の使用法について説明します。また、このメソッドのMQL実装を提案し、テスト指標とエキスパートアドバイザーを提示します。

シェアされた作者Maxim Romanovの記事
トレーディングアルゴリズム開発への科学的アプローチ
トレーディングアルゴリズム開発への科学的アプローチ

この記事では、一貫した科学的アプローチを用いて価格パターンを分析し、それに基づいてトレードアルゴリズムを構築するという、トレードアルゴリズムを開発するための方法論を考察します。 開発の理想を事例を用いて示します。

シェアされた作者MetaQuotesの記事
このプロジェクトは、収益性の高いトレーディングロボットを作成する手助けになります! 少なくとも、そうなるでしょう。
このプロジェクトは、収益性の高いトレーディングロボットを作成する手助けになります! 少なくとも、そうなるでしょう。

大きなプログラムは小さなファイルから始まり、関数やオブジェクトを追加し続けるにつれてサイズが大きくなります。 ほとんどのトレードロボット開発者は、この問題を処理するためにインクルードファイルを利用しています。 しかし、より良い解決策があります。:それは、プロジェクト内の任意のトレードアプリケーションの開発を開始することです。 そうする理由はたくさんあります。

シェアされた作者Evgeniy Ilinの記事
外国為替取引の背後にある基本的な数学
外国為替取引の背後にある基本的な数学

この記事は、外国為替取引の主な機能をできるだけ簡単かつ迅速に説明し、初心者といくつかの基本的なアイデアを共有することを目的としています。また、簡単なインディケータ―の開発を紹介するとともに、取引コミュニティで最も興味をそそる質問への回答を試みます。

シェアされた作者Stanislav Korotkyの記事
トレードにおけるOLAPの適用(パート3):トレード戦略の開発の相場分析
トレードにおけるOLAPの適用(パート3):トレード戦略の開発の相場分析

この記事では、トレードに適用される OLAP テクノロジを引き続き取り扱います。 最初の 2 つの記事で紹介した機能を拡張します。 今回は、クオートの運用分析について検討します。シェイプセレクタ 集計されたヒストリーデータに基づいて、トレード戦略に関する仮説を打ち出し、テストします。 この記事では、バーパターンとアダプティブトレードを研究するためのEAを紹介します。

シェアされた作者Alexander Fedosovの記事
戦略ビルダー機能の拡張
戦略ビルダー機能の拡張

前の2つの記事では、さまざまなデータ型へのメリルパターンの適用について説明し、提示されたアイデアをテストするためのアプリケーションを開発しました。本稿では、引き続き戦略ビルダーで作業し、その効率を改善し、新しい機能を実装します。

シェアされた作者Roman Klymenkoの記事
クロスプラットフォームグリッドEAの開発:マルチカレンシーEAのテスト
クロスプラットフォームグリッドEAの開発:マルチカレンシーEAのテスト

この1か月で相場は30%以上も下落しました。(コロナショック後です。) グリッド系とマーチンゲール系のEAのテストには最適な時期のようです。 本記事は、「クロスプラットフォームのグリッドEAを作る」シリーズの無計画な続編です。 現在の相場では、グリッドEAのストレスレストを整えるチャンスとなっています。 ということで、この機会にEAのテストをしてみましょう。

シェアされた作者Aleksey Vyazmikinの記事
PythonやRの知識が不要なYandexのCatBoost機械学習アルゴリズム
PythonやRの知識が不要なYandexのCatBoost機械学習アルゴリズム

この記事では、具体的な例を用いて、機械学習プロセスのコードと主要な段階の説明をします。 このモデルを取得するためには、PythonやRの知識は必要ありません。 さらに、MQL5の基本的な知識があれば十分です - まさに私のレベルです。 したがって、この記事が、機械学習の評価やプログラムへの実装に興味のある人たちの手助けとなり、幅広い人たちの良いチュートリアルとなることを期待しています。

シェアされた作者dmitrievskyの記事
高度なリサンプリングと総当たり攻撃によるCatBoostモデルの選択
高度なリサンプリングと総当たり攻撃によるCatBoostモデルの選択

本稿では、モデルの一般化可能性を向上させることを目的としたデータ変換への可能なアプローチの1つについて説明し、CatBoostモデルの抽出と選択についても説明します。

シェアされた作者Andrey Dikの記事
遺伝的アルゴリズム - とても簡単です!
遺伝的アルゴリズム - とても簡単です!

この記事では、執筆者は遺伝的アルゴリズムを使用した進化計算について紹介しています。例を用いながらアルゴリズムの機能について紹介し、実用的な推奨される用例を提示しています。

Micheal Ekon Uduak
MQL5.communityに登録されました