Micheal Ekon Uduak / プロファイル
- 情報
|
no
経験
|
0
製品
|
0
デモバージョン
|
|
0
ジョブ
|
0
シグナル
|
0
購読者
|
すべてのチャネルインジケータは、上中下の3ラインとして表示されます。 移動平均インジケーターは主にチャネルに使用されますが、中央の線の描画原理は移動平均に似ています。 上下の線は中心線から等しい距離に位置します。 この距離は、標準偏差値 (ボリンジャーバンドバンド)、または ATR値 (ケルトナーチャネル) を使用して、価格のパーセント (エンベロープインジケータ) としてポイント単位で決定されます。
この章では、MQLアプリケーションでのマルチウィンドウインタフェースの作成の可能性をもたらすライブラリの実装を拡張します。また、グラフィカルオブジェクト上でのマウスの左クリックの優先順位のシステムを開発します。これは、要素がユーザのアクションに応答しない場合に発生する問題を回避するために必要です。
この記事では、グラフィックメモリの助けを借りて、相場の統計的分布ヒストグラムをプロットする可能性について説明します。サンプルのヒストグラムと mql5のグラフィカルオブジェクトの「非表示」関数があります。
ジグザグは、MT5のユーザーの間で人気の高いインジケーターです。この記事では、ジグザグのさまざまなパターンを作成する可能性について分析します。この結果はEAの開発に有用であるばかりでなく、その関数を拡張する不変なインジケーターとなりえます。
この記事では、80-20 トレード戦略を分析するためツール (インジケーターおよびEA) の開発について説明します。トレードルールは"ストリートスマート"より引用します。リンダラッシュクとローレンス · コナーズによる"短期的なトレード戦略”です。mql5を使用して、戦略ルールを定式化し、最近の相場のヒストリーベースで、インディケータとEAをテストします。
テストプロセスをどのように視覚的に作ることができるでしょう?答えは簡単です:ストラテジーテスターでドローダウン・預金・負荷のインジケーターを含むティック・インジケータ、バランスインジケーターを使用します。このソリューションは、ティック、相場変化、ドローダウン、資産、負荷を視覚的に追跡するのに役立ちます。
この記事では、リバーシング(反転)技術について扱います。 以前に考慮されたツールの許容レベルまで最大残高ドローダウンを削減します。 利益を減少させるかどうかを確認します。 また、株式、コモディティ、インデックス、ETF、農業相場など、他の相場でのリバース方式の実行方法も確認します。 注意として、この記事には多くの画像が含まれています!
本稿の最初の部分では、変更されたジグザグ指標と、そのタイプの指標のデータを受け取るためのクラスについて説明しました。ここでは、これらのツールに基づいて指標を開発する方法を示し、ジグザグ指標によって形成されたシグナルに従って取引を行うことを特徴とするテスト用のEAを作成します。さらに、本稿ではグラフィカルユーザインタフェースを開発するためのEasyAndFastライブラリの新しいバージョンを紹介します。
最もよくあるトレードシステムの開発の第一歩は、相場行動パターンを識別できるテクニカルインジケーターの作成です。 専門的に開発されたインジケーターを、フリーランスのサービスからオーダーすることができます。 この記事からは、適切な要件定義を作成する方法を学習します。より速く、希望のインジケーターを取得するのに役立ちます.
この記事では、ピボットの反転に基づいたシグナルのクラスの開発と実装について説明します。 このクラスは、標準ライブラリを適用する戦略を形成するために使用されます。 フィルタを追加することにより、ピボット戦略を改善することができるでしょう。
このライブラリアップデートでは、テーブルコントロール(CTableクラス)に新しいオプションが追加されます。テーブルセル内のコントロールのラインアップが拡張され、今回はテキストエディットボックスとコンボボックスが追加されます。また、このアップデートでは、実行中にMQLアプリケーションのウィンドウのイズを変更する機能も導入されています。
クラウド技術の普及が進んでいます。 今日では、有料と無料のストレージサービスから選択することができます。 トレードで使用することは可能でしょうか? 本稿では, クラウドストレージサービスを利用してターミナル間でのデータ交換を行う技術を提案します。
2015年にMATLAB パッケージがアップグレードされた後、DLL ライブラリを作成する最新のメソッドを検討する必要がありました。 この記事では、サンプルの予測インジケータを使用して、現代の64ビットバージョンのプラットフォームを使用して MetaTrader5 と MATLAB をリンクするメソッドを説明します。 MATLAB の接続シーケンス全体を考慮することにより、MQL5 開発者は速く高度な計算機能があるアプリケーションを作成し、«落とし穴»を回避することができます。
Kohonen ネットワークを扱うために設計されたユニバーサルツールに基づいて、最適なEAパラメータを分析して選択するシステムを構築し、時系列の予測を検討します。 第 I 部では、必要なアルゴリズムを追加して、一般に公開されているニューラルネットワーククラスを修正し、改善しました。 今回はこれを実践に応用しましょう。
この記事では、演算子の優先順位に基づいたパーサーを使用した数式の解析と評価の原則について検討します。Prattパーサーと操車場パーサー、バイトコードの生成とこのコードによる計算を実装し、式の関数として指標を使用する方法と、これらの指標に基づいてエキスパートアドバイザーで取引シグナルを設定する方法を確認します。
相場調査と相場分析には、複数の異なるアプローチがあります。 主なものには、テクニカルとファンダメンタルがあります。 テクニカル分析では、トレーダーは、価格、ボリュームなど、相場に関連する数値データとパラメータを収集、処理、分析します。 ファンダメンタルズでは、トレーダーは相場に直接的または間接的に影響を与えるイベントやニュースを分析します。 この記事では、価格速度測定方法を扱い、その方法に基づいてトレード戦略を研究します。
マルチラインテキストボックスの開発を続けましょう。今回の課題は、テキストがボックス幅を超えた場合には自動的にワードラップを行い、機会が生じた場合にはワードラップを取り消してテキストを前行に収めることです。
MQLプログラミング言語によって、取引戦略のモジュール設計の概念を実装することができます。この記事では、別々にコンパイルされたファイルモジュールからなるマルチモジュールEAの作成例をご紹介します。
取引の決定を行う際に、取引の過程で複数の時間枠でチャートを同時に分析する必要があることが多々あります。また、チャート上にはグラフィック分析のオブジェクトがあるため、すべてのチャートに同じオブジェクトを適用するのは不便です。この記事では、チャート上のオブジェクトの複製の自動化をご紹介したいと思います。
自己学習を行うEAを作成するためのReinforcement learningの適用。前回の記事では、Random Decision Forestアルゴリズムを学び、Reinforcement learning(強化学習)に基づく簡単な自己学習EAを作成しました。このアプローチの主な利点は、取引アルゴリズムを書くことの単純さと『学習」の高速性でした。強化学習(以下、単にRL)は、どのEAにも簡単に組み込むことができ、最適化のスピードを上げられます。