Question!ロボット(Expert Advisor)の開発者は、自分で取引をしているのですか? - ページ 9

 

元の投稿が見つかりませんでした。

Если я предъявлю результаты на реале, возьмешься перевести мою ТС с VisSim на MQL?

失礼ですが、feihuaに 必要なのでしょうか?

トレーダーやアナリストがVisSimを使用している場合、Mt4/5に移行しても収益性は上がらないが、メンテナンスの複雑さが増す...アルゴリズムへの最小限の編集は、すでに2人の専門家の仕事を必要とする。
 
Alexander_K2:

タダで」ではない。プログラマーというのは、なぜか自分の能力を過大評価してしまう。私と一緒に仕事をすれば、物理や数学をたくさん学び、売っても恥ずかしくないプログラムを開発することができます。

タスク1.

セカンドタイムフレーム、Ask/Bid OHLC S1-S60のデータをアーカイブに保存し、そこから1回目の実行時にデータを読み出す機能を備えた収集方法を開発すること。

この問題を解決しないことには、他のすべてがゴミとなる。うまくすれば、簡単にモノを売ることができる。

問題1は、カスタムグラフの 作成機能の登場により、解けるようになり、それほど手間がかからなくなりました。

物理学と数学。数学について、何か驚くようなことを教えてくれないかな?テイラー級数について、正当性、導出、証明などのテーマを扱えますか?ラプラス変換について教えてください。他に何か驚くような提案はありますか?しかし、簡単で人気のある、しかし有意義で詳細な方法でのすべてについてだけ。

 
Maxim Kuznetsov:

元の投稿が見つかりませんでした。

申し訳ないが、フェイホアには これが必要なんだ。

トレーダーやアナリストがVisSimを使っている場合、Mt4/5に移行しても収益性は上がらないが、メンテナンスが複雑になる...アルゴリズムのわずかな変更で、2人の専門家が必要になる。

私、エッジオブクライは、アーカイブからデータを読み出す機能を持つ秒OHLC S1-S60でティックデータを収集する機能が必要です。今は、スライドウィンドウで2日=1日、ウィンドウで2週間=1週間、といった具合に失うだけです。

について - 他に誰が必要としているのか、誰が買ってくれるのか?そうです。確率過程としてのBPを扱う人は皆、期待値に対して相対的にチャンネルを構築しています。この場合、正しい引用符の読み方はN秒に1回であり、それ以外のことはありません。

1年前、アレクセイ・ヴォルチャンスキーは、第二のTFの創設を話題にしたが、それはまだ続いている。

 
Dmitry Fedoseev:

物理学と数学。数学について、何か驚くようなことを教えてくれないかな?

表形式の関数を解析形式に変換する方法論や、直交座標から極座標に変換する方法論でも良いのですが、大衆的で、意味があり、詳細であることが必要だと思います。

;)

 
Alexander_K2:

私、エッジオブクライは、アーカイブからデータを読み出す機能を持つ秒OHLC S1-S60でティックデータを収集する機能が必要です。今はスライディングウィンドウの2日分=1日分、ウィンドウの2週間分=1週間分、といった具合にロスするだけです。

について - 他に誰が必要としているのか、誰が買ってくれるのか?そうです。確率過程としてのBPを扱う人は皆、期待値に対して相対的にチャンネルを構築しています。この場合、正しい引用符の読み方はN秒に1回であり、それ以外のことはありません。

1年前、アレクセイ・ヴォルチャンスキーは2番目のタイムフレームの話題を出したが、今でもそれは続いている...。

MT5へ移行 - より多くのタイムフレームがあり、非標準のものを作成することができます。

PS/そして、プライベートメッセージの送信を 開始します。

 
Igor Makanu:

表形式で関数を設定する方法を解析形式に変換する方法論を教えてほしい。 また、直交座標から極座標に変換する方法論もありがたいが、それもポピュラーで有意義で詳細なものでなければならない。

;)

:-)

そうなんです。

イラストとビデオでステップバイステップ :-)

 
Igor Makanu:

表形式で関数を設定する方法を解析形式に変換する方法論を教えてほしい。 また、直交座標から極座標に変換する方法論もありがたいが、それもポピュラーで有意義で詳細なものでなければならない。

;)

表形式から解析形式へ-これは「近似」と呼ばれ、それほど難しいことではありません。最も単純な方法(というか最も普遍的な方法)は、多項式によるものである。コードベースには、多項式の次数を変更する機能を持つ多項式回帰インジケータがあります - ファイルで少し作業するだけです。

直交座標系から極座標系への変換は実に簡単です。直交座標はxとy、極座標は原点から点までの長さ、座標の中心から 点までの線の方向の角度です。長さは、ピタゴラスの定理で決まります。アークタンジェン、アークシン、アークコシンなど、角度は思いのままです。

 
Dmitry Fedoseev:

問題1は、カスタムグラフを作成できるようになったことで、解けるようになったし、あまり複雑な問題ではない。

物理学と数学。数学について、何か驚くようなことを教えてくれないかな?テイラー級数について、正当性、導出、証明などのテーマを扱えますか?ラプラス変換について教えてください。他に何か驚くような提案はありますか?しかし、簡単で人気のある、しかし有意義で詳細な方法でのすべてについてだけ。

そんなこと知る必要ないだろテイラー級数などのジャンクは、任意の点で微分可能なある複素関数を、単純なものの系列として表現したものである。

しかし、BPは波動関数であり、それ以上でも以下でもない。どの時点でも特定の値を持たず、波束となっている。切り捨てているのでしょうか?

 

しかし、これでは本題から外れてしまう...。

皆さん、「理論から実践へ-2」のようなスレッドを立てて、ご自分の市場観を打ち出してください、そこでお会いしましょう。

 
Alexander_K2:

そんなこと知る必要ないだろテイラー級数などのジャンクは、任意の点で微分可能なある複素関数を、単純なものの系列として表現したものである。

しかし、BPは波動関数であり、それ以上でも以下でもない。どの時点でも特定の値を持たず、波束となっている。切り捨てているのでしょうか?

そうですね......それだけです。なぜ必要ないのか?自分に何が必要なのか、なんとなく自分自身で見えてくるのです。興味がある、ただそれだけです。テイラーシリーズは知っている、どうして発明されたのか不思議だ。そう、そして、科学の女王を実用化で汚すことなく。