Kun Li / Profil
ONNX (Open Neural Network Exchange) ist ein offenes Format, das zur Darstellung von Modellen des maschinellen Lernens entwickelt wurde. In diesem Artikel wird untersucht, wie ein CNN-LSTM-Modell zur Vorhersage von Finanzzeitreihen erstellt werden kann. Wir werden auch zeigen, wie man das erstellte ONNX-Modell in einem MQL5 Expert Advisor verwendet.
Maschinelles Lernen hat sich zu einer beliebten Methode für die Strategieentwicklung entwickelt. Während die Maximierung der Rentabilität und der Vorhersagegenauigkeit stärker in den Vordergrund gerückt wurde, wurde der Bedeutung der Verarbeitung der Daten, die zur Erstellung von Vorhersagemodellen verwendet werden, nicht viel Aufmerksamkeit geschenkt. In diesem Artikel befassen wir uns mit der Verwendung des Konzepts der Entropie zur Bewertung der Eignung von Indikatoren für die Erstellung von Prognosemodellen, wie sie in dem Buch Testing and Tuning Market Trading Systems von Timothy Masters dokumentiert sind.
Alan Andrews ist einer der berühmtesten „Ausbilder“ der modernen Welt auf dem Gebiet des Handels. Seine „pitchfork“ (Heugabel) ist in fast allen modernen Kursanalyseprogrammen enthalten. Doch die meisten Händler nutzen nicht einmal einen Bruchteil der Möglichkeiten, die dieses Instrument bietet. Im Übrigen enthält der ursprüngliche Lehrgang von Andrews nicht nur eine Beschreibung der Heugabel (obwohl sie das Hauptwerkzeug bleibt), sondern auch einiger anderer nützlicher Konstruktionen. Der Artikel gibt einen Einblick in die wunderbaren Methoden der Chartanalyse, die Andrews in seinem ursprünglichen Kurs lehrte. Achtung, es wird viele Bilder geben.
Die Klassifizierung von Daten ist für einen Algo-Händler und einen Programmierer von entscheidender Bedeutung. In diesem Artikel werden wir uns auf einen logistischen Klassifizierungsalgorithmus konzentrieren, der uns wahrscheinlich helfen kann, die Ja- oder Nein-Stimmen, die Höhen und Tiefen, Käufe und Verkäufe zu identifizieren.
Der nächste Algorithmus, den ich besprechen werde, ist die Optimierung der Kuckuckssuche (Cockoo) mit Levy-Flügen. Dies ist einer der neuesten Optimierungsalgorithmen und ein neuer Spitzenreiter in der Rangliste.
Betrachten wir einen der neuesten modernen Optimierungsalgorithmen - die Grey-Wolf-Optimierung. Das originelle Verhalten bei Testfunktionen macht diesen Algorithmus zu einem der interessantesten unter den zuvor besprochenen Algorithmen. Dies ist einer der besten Algorithmen für das Training neuronaler Netze, glatte Funktionen mit vielen Variablen.
In diesem Artikel werden wir den Algorithmus eines künstlichen Bienenvolkes untersuchen und unser Wissen durch neue Prinzipien zur Untersuchung funktionaler Räume ergänzen. In diesem Artikel werde ich meine Interpretation der klassischen Version des Algorithmus vorstellen.
In diesem Artikel wird eine Klasse vorgestellt, die die schnelle provisorische Ermittlung der Merkmale verschiedener Zeitreihen ermöglicht. Dabei werden die statistischen Parameter und die Autokorrelationsfunktion berechnet, eine Berechnung des jeweiligen Spektrums der Zeitreihen durchgeführt und ein Histogramm angelegt.
Eine der populärsten Methoden zur Analyse von Märkten ist das Prinzip der Elliott-Wellen. Diese Analyse ist jedoch ziemlich kompliziert, sodass wir hierfür zusätzliche Tools verwenden müssen. Eines dieser Instrumente ist der automatische Marker. Dieser Beitrag beschreibt die Erzeugung eines automatischen Analyseinstruments der Elliott-Wellen in der MQL5-Sprache.