论坛最热门主题
- 承包商不提供原始文件,或者年份新,问题旧。 72 新评论
- 查尔斯-道的理论 59 新评论
- 谁在水平线上交易分享他们的经验 34 新评论
在本文中,我将改进库类,从而满足需要多个缓冲区来显示其数据的多品种、多周期标准指标的开发能力。

交易者经常谈论趋势和横盘,但很少有人真正了解趋势/横盘是什么,甚至很少能够清楚地解释这些概念。 讨论这些基本术语通常会受到一系列顽固偏见和误解的困扰。 然而,如果我们想赚钱,就需要了解这些概念的数学和逻辑含义。 在本文中,我将仔细研究趋势和横盘的本质,并尝试定义行情结构是基于趋势/横盘,亦或其他。 我还将研究在趋势和横盘行情上获利的最佳策略。

在第二篇文章中,我们将继续研究神经网络,并研究在智能交易系统当中调用我们所创建 CNet 类的示例。 我们将操控两个神经网络模型,它们在训练时间和预测准确性方面都表现出相似的结果。

本文专门介绍了程序化生成自定义品种(符号),这些自定义品种可用来演示一些显示报价的流行方法。 它描述的是一种建议的微创智能交易系统改编方案,可用在派生的自定义品种图表上,如同真实品种一样。 MQL 源代码随附于文后。
根据本系列文章的用户和读者的评论和要求,程序已进行了修改。 本文包含一个自动优化器的新版本。 该版本实现了所需的功能,并提供了其他改进,这些是我运用该程序操作时发现的。

超买/超卖区域是某种市场状态的特征,可由证券价格的疲软变化来区分。 这种负面变化会明显发生在任何尺度趋势发展的最后阶段。 由于交易中的利润价值直接取决于尽可能覆盖更广趋势幅度的能力,因此在任何证券交易中,探测此类区域的准确性是一项关键任务。

交易者经常谈论趋势和横盘,但很少有人真正了解趋势/横盘是什么,甚至很少能够清楚地解释这些概念。 讨论这些基本术语通常会受到一系列顽固偏见和误解的困扰。 然而,如果我们想赚钱,就需要了解这些概念的数学和逻辑含义。 在本文中,我将仔细研究趋势和横盘的本质,并尝试定义行情结构是基于趋势/横盘,亦或其他。 我还将研究在趋势和横盘行情上获利的最佳策略。
DoEasy 函数库中的时间序列(第四十七部分):多周期、多品种标准指标
在本文中,我着手开发操控标准指标的方法,最终能够基于函数库类创建多品种、多周期的标准指标。 此外,我将在时间序列类中添加“跳过柱线”事件,并将函数库的预备函数移至 CEngine 类,从而消减主程序代码中的过多负载。
本文研究了一个示例,该示例使用单个指标缓冲区来创建多品种、多周期标准指标,以便在指标子窗口中进行构造和操作。 我会准备库类,以便在程序主窗口中与标准指标一起操作,并有多个缓冲区来显示其数据。

交易者经常谈论趋势和横盘,但很少有人真正了解趋势/横盘是什么,甚至很少能够清楚地解释这些概念。 讨论这些基本术语通常会受到一系列顽固偏见和误解的困扰。 然而,如果我们想赚钱,就需要了解这些概念的数学和逻辑含义。 在本文中,我将仔细研究趋势和横盘的本质,并尝试定义行情结构是基于趋势/横盘,亦或其他。 我还将研究在趋势和横盘行情上获利的最佳策略。

我们通常使用烛条或条形图来分析行情,将价格序列切分成规则间隔。 这样的离散化方法不会扭曲行情走势的真实结构吗? 将音频信号离散化为规则间隔是可以接受的解决方案,因为音频信号是随时间变化的函数。 信号本身是取决于时间的幅度。 该信号属性是基本的。

超买/超卖区域是某种市场状态的特征,可由证券价格的疲软变化来区分。 这种负面变化会明显发生在任何尺度趋势发展的最后阶段。 由于交易中的利润价值直接取决于尽可能覆盖更广趋势幅度的能力,因此在任何证券交易中,探测此类区域的准确性是一项关键任务。

在第二篇文章中,我们将继续研究神经网络,并研究在智能交易系统当中调用我们所创建 CNet 类的示例。 我们将操控两个神经网络模型,它们在训练时间和预测准确性方面都表现出相似的结果。