文章,程序库评论 - 页 43

新文章 SQLite: MQL5 原生 SQL 数据库操纵已发布: 交易策略的研发与大数据处理相关联。 现在,您能够基于 SQLite 在 MQL5 中直接运用 SQL 查询来操纵数据库。 该引擎的重要特性在于整个数据库都被安置在用户 PC 上的单个文件中。 在 MetaEditor 中调试 SQL 查询 如果代码不成功,则所有操纵数据库的函数都将返回错误代码。 如果您遵循以下四个简单规则,操纵它们不会引发任何问题: 调用 DatabaseFinalize() 之后,应销毁所有查询控柄; 完毕前应利用 DatabaseClose() 关闭数据库; 应检查查询执行的结果;
新文章 网格和马丁格尔交易系统中的机器学习。 您敢为其打赌吗? 已发布: 本文介绍了应用于网格和马丁格尔交易的机器学习技术。 令人惊讶的是,这种方法在全球网络中难觅踪迹。 阅读过本文之后,您将能够创建自己的交易机器人。 测试应在机器人所训练的时间帧内进行。 在这种情况下,它是 H1。 可以采用开盘价对其进行测试,因为该机器人对于柱线开盘拥有明确的控制权。 不过,由于运用的是网格,因此可以选择 M1 OHLC 来获得更高的精度。 该特定的机器人已在以下周期内经历了训练: START_DATE = datetime ( 2020 , 5 , 1 ) TSTART_DATE = datetime (
新文章 开发交易算法的科学方法 已发布: 本文探讨了开发交易算法的方法,即使用一致的科学方法来分析可能的价格模式,并基于这些模式构建交易算法。开发的理念是通过实例来展示的。 测试时间为2018年1月1日至2020年7月28日,在M1时间段内,使用真实点模式进行。参数没有得到优化,因为我想说明的是,没有必要为每个货币对优化一个完全准备好的算法。我们将改变块大小,最小块大小和手数,努力使利润大大超过佣金。 图 7
新文章 实用且奇特的自动交易技术 已发布: 在本文中,我将演示一些非常有趣且实用的自动交易技术。 其中一些可能您很熟悉。 我将尝试覆盖最有趣的方法,并解释为什么它们值得使用。 此外,我将展示这些技术在实战中的适用性。 我们将创建智能交易系统,并依据历史报价来测试全部所述技术。 实际上,该技术不仅可用在马丁格尔之中,而且可以用在具有足够高频的任何其他交易策略当中。 在此示例中,我将利用基于余额回撤的量具。 因为考虑与余额有关的所有事情都更容易。 我们把余额表分为上升和下降部分。 两个相邻的区段形成一个半波。 随着交易数量趋于无限,半波的数量亦趋于无限。
新文章 自适应算法(第四部分):附加功能和测试 已发布: 我将继续采用最少的必要功能来充实算法,并测试结果。 其获利能力十分低下,但文章展示的全自动盈利交易的模型,是在不同的行情基本面及完全不同的金融产品上进行。 在上一篇文章中,我演示了该算法如何生成开仓信号,并在若干尺度上同时分析,从而定义最大趋势尺度。 基本操作算法已讲述过了。 价格序列图表并非由一个尺度构成。 同一时刻在若干尺度上显示出趋势,而在其他尺度上则可能是横盘。 此功能应是为了获取盈利。 在此,趋势部分是片段,趋势持续概率超过 50%,而横盘部分,其趋势反转概率超过 50%。
DDE - Server: 导出 MQL5 实盘数据至 Excel (DDE) 作者: Alexander Piechotta
新文章 MQL5:在 MetaTrader 5 中分析和处理商品期货交易委员会 (CFTC) 报告已发布: 在本文中,我们将开发用于 CFTC 报告分析的工具。我们将解决下述问题:开发可直接使用委员会提供的数据文件的 CFTC 报告数据而无需进行中间处理和转换的指标。此外,该指标可用于不同目的:作为指标绘制数据、处理其他指标中的数据、在脚本中用于自动分析、在“EA 交易”的交易策略中使用。 作者:Aleksey Sergan
  指标: MAMA_NK  (2)
MAMA_NK: 本版本的指标是使用 John Ehlers 所写的 Omega 代码创建的。 作者: Nikolay Kositsin
T3 随机动量指数: 这个版本进行的计算和最初的随机动量指数方法相同,除了一个非常重要的部分: 它没有使用 EMA (指数移动平均,Exponential Moving Average) 来计算,它使用的是 T3。这会使结果更加平滑,而不会增加任何延迟。 作者: Mladen Rakic
  指标: STALIN  (1)
STALIN: 该指标的买/卖信号, 基于两条不同周期均线的交叉。 作者: Andrey Vassiliev
新文章 神经网络变得轻松(第十二部分):舍弃 已发布: 作为研究神经网络的下一步,我建议研究在神经网络训练过程中提高收敛性的方法。 有若干种这样的方法。 在本文中,我们将研究其中之一,名为“舍弃”。 在训练神经网络时,会将大量特征馈入每个神经元,且很难评估每个独立特征的影响。 结果就是,某些神经元的误差会被其他神经元的调整值抹平,这些误差从而会在神经网络输出处累积。 这会导致训练在某个局部最小值处停止,且误差较大。 这种效应涉及特征检测器的协同适应,其中每个特征的影响会随环境而变化。 当环境分解成单独的特征,且可以分别评估每个特征的影响时,很可能会有相反的效果。
新文章 DoEasy 函数库中的价格(第六十五部分):市场深度集合并操控 MQL5.com 信号的类 已发布: 在本文中,我将创建所有品种的市场深度集合类,并着手开发创建信号对象类来操控 MQL5.com 信号服务的功能。 我们也在 OnInitDoEasy() 函数中进行一些修改。 现在, 所有用到品种的即时报价序列创建 已实现,可直接访问函数库主对象的相应方法。 此外, 我还加入了针对所创建 DOM 序列的检查 : //--- Check created timeseries - display descriptions of all created timeseries in the
换了好几个交易商的软件,迈达克自己的软件都试过了,都是运行5~15分钟左右自动崩溃。我就纳闷了。换台电脑就没问题,不知道问题出在哪里。关键是不想换电脑,不想重装系统。
  指标: RSI(MA)  (1)
RSI(MA): 基于MA值的RSI指标。 不会抖动。 作者: o_O
Second Level Candles And Alligator Indicators Second Level Candles And Alligator Indicators 每12秒产生一个K线,而且自带Alligator指标,对超短线选手交易非常有帮助。程序启动时可能不成功,是因为MT5 MqlTick 数据加载少的原因。可以通过修改显示的数据参数避免,比如display=100,程序正常之后再将参数调大 display=300 。如果数据不正常,也可以采用重新加载的方式解决。 如果您对这个指标有任何建议,请联系作者。 Second Level Candles And
新文章 DoEasy 函数库中的价格(第六十四部分):市场深度,DOM 快照类和快照序列对象 已发布: 在本文中,我将创建两个类(DOM 快照对象类,和 DOM 快照序列对象类),并测试 DOM 数据序列的创建。 在品种图表中显示:最后的 DOM 快照的编号、品种的订单数量、当前快照中的订单数量、以及添加到 DOM 快照列表中的 DOM 快照总数: 该示意图显示了已经运行了一段时间的 EA 上的数据(已在列表中添加了 5019 个快照) 作者: Artyom Trishkin
新文章 神经网络变得轻松(第十一部分):自 GPT 获取 已发布: 也许,GPT-3 是目前已有语言类神经网络中最先进的模型之一,它的最大变体可包含 1750 亿个参数。 当然,我们不打算在家用 PC 上创建如此庞然之物。 然而,我们可以看看在我们的操作中能够采用哪种体系解决方案,以及如何从中受益。 在同一数据集上测试了新的神经网络类,该数据集在之前的测试中曾经用过:神经网络馈入 EURUSD,时间帧为 H1,最后 20 根烛条的历史数据。 测试结果证实了这个假设,即更多的参数需要更长的训练时间。 在第一个训练迭代,参数较少的智能交易系统展现出的结果更稳定。
MultiZigZag - ZigZag 指标的另一个变体 (经济的 ZigZag): 这个版本的 ZigZag 可以同时显示三个zigzag, 数据来自当前的时段以及更大的时段. 作者: Eugeni Neumoin
ATR 数值指标: 一款用点值或点数显示 ATR (平均真实范围) 数值的指标,其中包含设置倍数的选项。 作者: Hossein Nouri
随机振荡交易: 当随机振荡进入超买超买区域, 开首仓, 如果图表反转, 则操作一手。 作者: андрей
Ikarakatica: Ikarakatica 指标。 它显示了何时买入以及何时卖出。 作者: John Smith
新文章 DoEasy 函数库中的价格(第六十三部分):市场深度及其抽象请求类 已发布: 在本文中,我将着手开发操控市场深度的功能。 我还将创建市场深度抽象订单对象,及其衍生类。 在本文中,我将着手实现操控市场深度的功能。 从概念上讲,操控 DOM 的类与以前实现的所有函数库类都没啥区别。 与此同时,我们将拥有一个 DOM 特征数据的模型,其中包含 DOM 中存储的有关订单数据信息。激活 OnBookEvent() 处理程序时,可由 MarketBookGet() 函数获取数据。 在 DOM 发生任何变化的情况下,处理程序中会为订阅 DOM 事件的每个品种激活一个事件。 故此,DOM
Close_all-e: 脚本平仓并删除所有挂单。 作者: Vasyl Nosal
MQL5网页无法打开,重装系统仍然无法打开,请教下有没有遇到同样问题的,求解决
新文章 DoEasy 函数库中的价格(第六十二部分):实时更新即时报价序列,为操控市场深度做准备 已发布: 在本文中,我将实现即时报价数据的实时更新,并为操控市场深度的品种对象类(DOM 本身将在下一篇文章中实现)做准备。 我已为程序中用到的所有品种创建了即时报价数据集合。 该函数库能够为程序用到的每个品种获取所需数量的即时报价数据,并将所有这些品种存储在即时报价数据集合当中。 即时报价数据集合能够搜索任何所需即时报价对象,并接收其数据。 我们能够整理这些列表,以便进行统计研究。 不过,当某个品种的新即时报价到达时,并不会将新即时报价存到即时报价数据库当中。 在本文中,我将实现此功能。
新文章 ZUP - 通用之字折线构造 Pesavento 形态。图形界面已发布: 自 ZUP 平台的第一版本发布以来已过了十年时间, 期间它经历了多次变化和改进。结果就是, 如今我们为 MetaTrader 4 提供了一个独特的图形插件, 您可以快速、便捷地分析行情数据。本文介绍如何使用 ZUP 指标平台的图形界面。 当选择波浪符号时, 在屏幕上显示一条垂直线, 允许您精确地绘制图表极点上方/下方的符号。垂直线颜色和样式显示光标相对于柱线的位置。 1)光标位于零号柱线或柱线实体的右侧。将显示由灰色虚线构成的线。 此图形表现示意波浪符号并未设置在此图表上。...
新文章 DoEasy 函数库中的时间序列(第六十一部分):品种即时报价序列集合 已发布: 鉴于程序在其运行时可能会用到不同的品种,因此应为每个品种创建一个单独的列表。 在本文中,我将把这些列表合并到一个即时报价数据集合。 实际上,这将是一个常规列表,基于指向标准库 CObject 类及其衍生类实例指针的动态数组。 编译 EA,并在任何品种的图表上启动它。 在此之前,请在预定义列表中确保启用当前时间帧和品种,在整个建议的品种当中,仅保留了前两个品种: 在 OnInit() 处理程序中,经历了短时间,为两个所用品种创建即时报价数据之后,日志会收到有关程序参数、创建的时间序列、和 所创建即时报价
MT5 可否实现用代码激活上一图表窗口或激活下一图表窗口的功能。就如热键Ctrl+F6和Ctrl+Shift+F6的功能一样。用代码控制实现自动翻页。
新文章 DoEasy 函数库中的时间序列(第六十部分):品种即时报价数据的序列列表 已发布: 在本文中,我将创建存储单一品种即时报价数据的列表,并在 EA 中检查其创建状态,以及检索所需数据。 每个所用品种各自的即时报价数据列表将来会构成即时报价数据集合。 编译 EA,于任何品种的图表上启动它,并在设置中初步定义采用当前品种和当前时间帧。 当初始化 EA 时, 将显示有关 EA 参数的数据,所创建时间序列的数据 ,以及(稍后) 创建的即时报价序列上的数据 。 下面显示的是找到的当日两个 要价(Ask)最高 和 出价(Bid)最低 的即时报价数据: Account 8550475