新文章 神经网络变得简单(第 64 部分):保守加权行为克隆(CWBC)方法 已发布: 据前几篇文章中所执行测试的结果,我们得出的结论是,训练策略的最优性很大程度上取决于所采用的训练集。在本文中,我们将熟悉一种相当简单,但有效的方法来选择轨迹,并据其训练模型。 该方法的作者提出了一种新的保守性正则化器,用于回报条件化的行为克隆方法,显式鼓励政策停留在接近原始数据分布。该思路是当条件化回报位于大量分布之外时,为了停留在接近分布内的动作,而强制执行预测动作。这是通过往拥有高回报轨迹里的 RTG 添加正值噪声,并惩罚预测动作与地面实况之间的 L2
新文章 神经网络变得简单(第 63 部分):决策转换器无监督预训练(PDT) 已发布: 我们将继续讨论决策转换器方法系列。从上一篇文章中,我们已经注意到,训练这些方法架构下的转换器是一项相当复杂的任务,需要一个大型标记数据集进行训练。在本文中,我们将观看到一种使用未标记轨迹进行初步模型训练的算法。 至于优调期间,我需要连续数十次下游训练和测试迭代,这也需要时间和精力。 然而,学习结果并不那么乐观。作为训练的结果,我得到了一个模型,其按最小手数交易,并取得了不同的成功率。在历史的某些部分,余额曲线展示出明显的上升趋势。在另一些部分,则明显下降。泛泛来说,依据训练数据和新集合,模型的结果都接近于
新文章 如何利用 MQL5 创建简单的多币种智能交易系统(第 3 部分):添加交易品种、前缀和/或后缀、以及交易时段 已发布: 若干交易员同事发送电子邮件或评论了如何基于经纪商提供的名称里带有前缀和/或后缀的品种使用此多币种 EA,以及如何在该多币种 EA 上实现交易时区或交易时段。 在 上一篇文章 中,我说过,这个多币种智能交易系统不适用于经纪商提供的含有前缀或后缀的品种或货币对。 在仅适用于单一货币对的 EA 中(一个 EA 只对一个货币对起作用),经纪商的品种名称含有前缀和/或后缀也不会出现任何问题。 但是在我创建的多币种 EA 中,这成了一个问题,因为我们首先注册了 30
Trailing Stop Management Function : Filter orders based on the set magic number, execute the final stop loss management function, adjust the Stoploss and TrailingStop parameters, and place the Management function according to the structure of ea. It is recommended to place it under void OnTick() 作者:
新文章 神经网络变得简单(第 62 部分):在层次化模型中运用决策转换器 已发布: 在最近的文章中,我们已看到了运用决策转换器方法的若干选项。该方法不仅可以分析当前状态,还可以分析先前状态的轨迹,以及在其中执行的动作。在本文中,我们将专注于在层次化模型中运用该方法。 事实证明,收集 2023 年前 7 个月历史区间的训练样本是相当劳累的。我遇到了一个问题,即便智能体动作采样的界限很小,大多数验算也无法满足余额正增长需求。 为了在优化模式下选择最优计划界限,将每次验算的迭代次数调整为优化参数。
根据设置的magic number筛选订单,执行追踪止损管理的函数 : 根据设置的magic number筛选订单,执行最终止损Management()管理的函数,Stoplose和TrailingStop 参数可调整,Management()函数可以根据ea的结构进行放置,建议放置在void OnTick()下 作者: Rahos hoo
根据magic number计算当前账号最后一次成交量 : 这是一个简单的function,根据magic number计算当前账号最后一次成交量,你可以自己设置magic number 作者: Rahos hoo
新文章 Scikit-Learn 库中的分类模型及其导出到 ONNX 已发布: 在本文中,我们将探讨使用 Scikit-Learn 库中所有可用的分类模型来解决 Fisher 鸢尾花数据集的分类任务。我们将尝试把这些模型转换为 ONNX 格式,并在 MQL5 程序中使用生成的模型。此外,我们将在完整的鸢尾花数据集上比较原始模型与其 ONNX 版本的准确性。 在新闻稿 “ONNX Runtime 现已开源” 中,声明了 ONNX Runtime 还支持 ONNX-ML 配置文件: ONNX Runtime是第一个完全支持 ONNX 1.2及更高版本(包括 ONNX-ML
新文章 神经网络变得简单(第 61 部分):离线强化学习中的乐观情绪问题 已发布: 在离线学习期间,我们基于训练样本数据优化了智能体的政策。成品政策令智能体对其动作充满信心。然而,这种乐观情绪并不总是正当的,并且可能会在模型操作期间导致风险增加。今天,我们要寻找降低这些风险的方法之一。
新文章 您应当知道的 MQL5 向导技术(第 07 部分):树状图 已发布: 出于分析和预测目的而把数据分类是机器学习中一个非常多样化的领域,它具有大量的方式和方法。本文着眼于一种这样的方式,即集聚层次化分类。 本文是有关使用 MQL5 向导系列文章的一部分,着眼于 树状图 。我们已经研究了一些对于交易者很实用的使用 MQL5 向导思路,例如: 线性判别分析 、 马尔可夫链 、 傅里叶变换 、和其它一些想法,本文旨在尽力深入探查利用 MetaQuotes 移植的大量 ALGLIB 代码的能力、配合内置的 MQL5 向导、熟练测试和开发新思路的途径。 集聚层次化分类
新文章 开发回放系统(第33部分):订单系统(二) 已发布: 今天,我们将继续开发订单系统。正如您将看到的,我们将大规模重用其他文章中已经展示的内容。尽管如此,你还是会在这篇文章中获得一点奖励。首先,我们将开发一个可以与真实交易服务器一起使用的系统,无论是从模拟账户还是从真实账户。我们将广泛使用MetaTrader 5平台,该平台将从一开始就为我们提供所有必要的支持。
新文章 神经网络实验(第 7 部分):传递指标 已发布: 传递指标至感知器的示例。本文讲述了一般概念,并展示了最简单的现成智能交易系统,后随其优化和前向验算结果。 阅读大量这个主题的文章,我持续观察到一个悲伤的场面,那就是基于神经网络的交易系统的直接结果。许多好的思路和算法却并未带来期待的结果。 在传递输入参数时,始终会观察到相同的画面。例如,振荡器值的直接传递,以我的观点,这与资产价格没有任何共通之处。振荡器有一个众所周知的问题 —
新文章 群体优化算法:随机扩散搜索(SDS) 已发布: 本文讨论了基于随机游走原理的随机扩散搜索(Stochastic Diffusion Search,SDS)算法,它是一种非常强大和高效的优化算法。该算法允许在复杂的多维空间中找到最优解,同时具有高收敛速度和避免局部极值的能力。 有趣的事实: 1. 随机扩散搜索(SDS)是第一个群智能元启发式算法,属于群智能和自然搜索优化算法的家族。这种算法的其他例子是蚁群优化、粒子群优化和遗传算法。 2. 与基于柱头能量通信的蚁群优化不同,SDS使用代理之间的直接通信,类似于细齿蚁使用的串联呼叫机制。
新文章 神经网络变得简单(第 60 部分):在线决策转换器(ODT) 已发布: 最近两篇文章专门介绍了决策转换器方法,其在期望奖励的自回归模型境况下针对动作序列进行建模。在本文中,我们将研究该方法的另一种优化算法。 在线决策转换器算法对决策转换器进行了关键修改,从而确保高效的在线训练。第一步是泛化概率训练目标。在这种境况下,目标是训练一个随机政策,取最大化重复轨迹的概率。 在线 RL 算法的主要属性是它能够平衡探索和开发。即使采用随机政策,传统的 DT 公式也并未考虑探索。为了解决这个问题,ODT
新文章 群体优化算法:思维进化计算(MEC)算法 已发布: 本文探讨了MEC家族的算法,称为简单思维进化计算(Simple Mind Evolutionary Computation, Simple-MEC,SMEC)算法。该算法以其思想之美和易于实现而著称。 在解决复杂的高维问题时,进化计算中使用的群体算法比经典算法具有许多优势。它们可以更有效地找到与最优解足够接近的次优解,这在实际优化问题中通常是可以接受的。 进化计算中一种有趣的方法是Chengai和他的合著者于1998年提出的思维进化计算(Mind Evolutionary
新文章 神经网络变得简单(第 59 部分):控制二分法(DoC) 已发布: 在上一篇文章中,我们领略了决策变换器。但是,外汇市场复杂的随机环境不允许我们充分发挥所提议方法的潜能。在本文中,我将讲述一种算法,旨在提高在随机环境中的性能。 控制二分法是斯多葛学派(Stoicism)的逻辑基础。它意味着一种思辨,即我们周围的一切存在都可以分为两部分。第一个受制于我们,完全在我们的控制之下。我们无法全面控制第二个,无论我们采取什么动作,事件都会发生。 我们正在操控第一个领域,同时认为第二个是理所当然的。 “控制二分法”方法的作者在他们的算法中实现了类似的假设。DoC
新文章 群体优化算法:混合蛙跳算法(SFL) 已发布: 本文详细描述了混合蛙跳(Shuffled Frog-Leaping,SFL)算法及其在求解优化问题中的能力。SFL算法的灵感来源于青蛙在自然环境中的行为,为函数优化提供了一种新的方法。SFL算法是一种高效灵活的工具,能够处理各种数据类型并实现最佳解决方案。 混合蛙跳(SFL)算法是由M.Eusuff 和其他一些作者在2003年提出的。该算法结合了模因算法和粒子群算法的原理,其设计灵感来自一群青蛙在觅食过程中的行为。 SFL算法最初是作为一种求解组合优化问题的元启发式方法而开发的。它是基于数学函数和启发式搜索的使用。
新文章 为 Metatrader 5 开发MQTT客户端:TDD方法——第4部分 已发布: 本文是一系列文章的第四部分,介绍了我们为 MQTT 协议开发本机 MQL5 客户端的步骤。在这一部分中,我们将描述什么是 MQTT v5.0 属性,它们的语义,以及我们如何阅读其中的一些属性,并提供一个如何使用属性来扩展协议的简短示例。 属性是MQTT v5.0中添加的“可扩展性机制”的一部分。它们在之前的v3.1.1中不存在,这是此次重大升级之前的最新版本。它们在MQTT v5.0中无处不在。但是,什么是MQTT属性?究竟是什么东西的属性呢? 答案是应用程序消息(Application
新文章 神经网络变得简单(第 58 部分):决策转换器(DT) 已发布: 我们继续探索强化学习方法。在本文中,我将专注于一种略有不同的算法,其参考智能体政策构造一连串动作的范式。 在本系列中,我们已验证了相当广泛的不同强化学习算法。它们都使用基础方式: 智能体分析环境的当前状态。 采取最优动作(在学习的政策 — 行为策略的框架内)。 转入环境的新状态。 从环境中获得完全过渡到新状态的奖励。 该序列基于马尔可夫(Markov)过程的原理。假设起点是环境的当前状态。摆脱这种状态只有一种最优方法,它不依赖以前的路径。 我想讲述另一种替代方式,它是由谷歌团队在文章
maximus_vX lite: 利用等级进行交易的智能系统。 每种类型 (买入和卖出) 它可以最多有两笔持仓。 作者: Vladimir Karputov
新文章 机器学习中的量化(第1部分):使用 CatBoost 的理论、示例代码和实现分析 已发布: 本文探讨了量化在树模型构建中的理论应用,并展示了使用 CatBoost 实现的量化方法。不使用复杂的数学方程。 那么什么是量化,为什么要使用量化呢?让我们来弄清楚!
新文章 如何利用 MQL5 创建简单的多币种智能交易系统(第 2 部分):指标信号:多时间帧抛物线 SAR 指标 已发布: 本文中的多币种智能交易系统是智能交易系统或交易机器人,它仅在一个品种图表上就能交易(开单、平单、和管理订单,例如:尾随停损和止盈)超过 1 个交易品种对。这次我们只用 1 个指标,即抛物线 SAR 或 iSAR, 将其应用在 PERIOD_M15 到 PERIOD_D1 的多个时间帧。 多币种智能交易系统将用 1 个指标信号,但有 5 个时间帧,始自 PERIOD_M15、PERIOD_M30、PERIOD_H1、PERIOD_H4 和 PERIOD_D1。
新文章 开发回放系统 — 市场模拟(第 28 部分):智能交易系统项目 — C_Mouse 类 (II) 已发布: 当人们开始创建第一个拥有计算能力的系统时,一切都需要工程师的参与,他们必须非常熟知该项目。我们谈论的是计算机技术的曙光,那个时代甚至没有用于编程的终端。随着它的发展,越来越多的人对能够创造一些东西感兴趣,涌现出新的思路和编程方式,取代了旧式风格的改变连接器位置。这就是第一个终端出现的时刻。 对于那些曾长期编程的人来说,我们在下面展示的内容也许并无太多意义。为什么要费尽心思让编程更接近自然语言呢?答案很简单: 您不是在为机器编程,而是在为其他程序员编程
新文章 神经网络变得简单(第 57 部分):随机边际扮演者-评论者(SMAC) 已发布: 在此,我将研究相当新颖的随机边际扮演者-评论者(SMAC)算法,该算法允许在熵值最大化的框架内构建潜在变量政策。 在构建自动交易系统时,我们开发了制定后续决策的算法。强化学习方法正是为了解决这些问题。强化学习的关键问题之一是如同智能体学习与环境交互那般的探索过程。在这种前后呼应情况下,经常运用最大熵原理,这促使智能体按最大随机度执行动作。然而,在实践中,这种算法只能训练简单的智能体学习单个动作周围的局部变化。这是因为需要计算智能体政策的熵值,并将其用作训练目标的一部分。 同时,
新文章 开发回放系统(第32部分):订单系统(一) 已发布: 在我们迄今为止开发的所有东西中,正如你可能会注意到并最终同意的那样,这个系统是最复杂的。现在我们需要做一些非常简单的事情:让我们的系统模拟交易服务器的操作。准确实现交易服务器操作方式似乎是一件轻而易举的事情。至少说起来是这样。但我们需要这样做,以便对回放/模拟系统的用户来说,一切都是无缝和透明的。
支撑阻力 - Barry (扩展版): 支撑阻力 - Barry (扩展版). 作者: Mladen Rakic
多时段移动平均 [v03] : 移动平均指标, 可应用于多个时段 (高于或者低于当前图表的时段). 包含: SMA, EMA, SMMA, LWMA, AMA, DEMA, TEMA, FRAMA, and VIDYA 作者: Armand Kilian
新文章 将您自己的LLM集成到EA中(第2部分):环境部署示例 已发布: 随着人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该思考如何将强大的语言模型集成到我们的算法交易中。对大多数人来说,很难根据他们的需求对这些强大的模型进行微调,在本地部署,然后将其应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。 WSL2是微软早在2017年就推出的WSL原始版本的重大升级。WSL2不仅仅是一个版本升级,它更快、更通用,并且使用了真正的Linux内核。直到今天,我相信很多人都不知道WSL的存在,包括一些IT从业者。他们仍在继续使用
新文章 开发回放系统 — 市场模拟(第 27 部分):智能交易系统项目 — C_Mouse 类 已发布: 在本文中,我们将实现 C_Mouse 类。它提供了最高级别的编程能力。不过,说到高级或低级编程语言,并不是在代码中包含污言秽语或行话。它有其它含义。当我们谈论高级或低级编程时,我们意指对于其他程序员来说理解代码是多么容易或困难。 在上一篇文章 《开发回放系统(第 26 部分):智能交易系统项目(I)》 中,我们详细研究了第一个类如何开始构造。现在我们扩展这些思路,并令它们更实用。这就把我们带到了 C_Mouse
新文章 开发回放系统(第31部分):EA交易项目——C_Mouse类(五) 已发布: 我们需要一个计时器,它可以显示距离回放/模拟运行结束还有多少时间。乍一看,这可能是一个简单快捷的解决方案。许多人只是尝试适应并使用交易服务器使用的相同系统。但有一件事是很多人在考虑这个解决方案时没有考虑的:对于回放,甚至更多的是模拟,时钟的工作方式不同。所有这些都使创建这样一个系统变得复杂。

您错过了交易机会:
- 免费交易应用程序
- 8,000+信号可供复制
- 探索金融市场的经济新闻
注册
登录