Discusión sobre el artículo "Algoritmos de optimización de la población: microsistema inmune artificial (Micro Artificial immune system, Micro-AIS)"
№ | AO | Description | Hilly | Hilly final | Forest | Forest final | Megacity (discrete) | Megacity final | Final result | % of MAX | ||||||
10 p (5 F) | 50 p (25 F) | 1000 p (500 F) | 10 p (5 F) | 50 p (25 F) | 1000 p (500 F) | 10 p (5 F) | 50 p (25 F) | 1000 p (500 F) | ||||||||
1 | (P+O)ES | (P+O) evolution strategies | 0,99934 | 0,91895 | 0,56297 | 2,48127 | 1,00000 | 0,93522 | 0,39179 | 2,32701 | 0,83167 | 0,64433 | 0,21155 | 1,68755 | 6,496 | 72,18 |
2 | SDSm | stochastic diffusion search M | 0,93066 | 0,85445 | 0,39476 | 2,17988 | 0,99983 | 0,89244 | 0,19619 | 2,08846 | 0,72333 | 0,61100 | 0,10670 | 1,44103 | 5,709 | 63,44 |
Por favor, enlace a los artículos relevantes en esta tabla.
Redes neuronales, algoritmos, optimización, aprendizaje... todo está muy bien.
¿Qué algoritmo puede utilizarse para leer un mensaje?
En el análisis de sistemas, lo importante son los elementos del sistema y las relaciones funcionales entre ellos, unidos por el significado (propósito) de la existencia del sistema.
¿Hasta qué punto está justificado aplicar el análisis estocástico donde deberíamos intentar aplicar el análisis funcional?
La cuestión puede ser lateral, pero en la dirección de comprender la base fundamental del proceso.
Foro sobre negociación, sistemas automatizados de negociación y ensayo de estrategias de negociación
fxsaber, 2024.01.19 18:16
Ejemplo de aplicación de la biblioteca para algoritmos de optimización personalizados.
double FF( const double &Arg[] ) { double Res = 1; for (uint i = ArraySize(Arg); (bool)i--;) Res *= MathSin(Arg[i]); return(Res); }Los mejores valores deben ser cercanos a uno. Pero, ¿pueden los algoritmos de esta serie de artículos acercarse a ese máximo?
Durante mucho tiempo intenté arrastrar algoritmos de esta serie al optimizador (quería paralelizarlos), pero falla épicamente - https://www.mql5.com/en/forum/454524/page2#comment_50233782.

- 2023.10.20
- www.mql5.com
Durante mucho tiempo he intentado arrastrar algoritmos de esta serie al optimizador (quería paralelizarlos), pero falla épicamente - https://www.mql5.com/en/forum/454524/page2#comment_50233782.


- www.mql5.com
Foro sobre negociación, sistemas automatizados de negociación y ensayo de estrategias de negociación
fxsaber, 2024.01.19 22:30
¿Es difícil optimizar una función de una especie?double FF( const double &Arg[] ) { double Res = 1; for (uint i = ArraySize(Arg); (bool)i--;) Res *= MathSin(Arg[i]); return(Res); }Los mejores valores deben ser cercanos a uno. Pero, ¿pueden los algoritmos de esta serie de artículos acercarse a este máximo?
Probado.
#define dInput01 X1 #define dInput02 X2 #define dInput03 X3 #define dInput04 X4 #define dInput05 X5 #define dInput06 X6 #define dInput07 X7 #include <fxsaber\Input_Struct\Input_Struct.mqh> // https://www.mql5.com/es/code/47932 INPUT_STRUCT inInputs; MACROS_INPUT(double, X1, 0); MACROS_INPUT(double, X2, 0); MACROS_INPUT(double, X3, 0); MACROS_INPUT(double, X4, 0); MACROS_INPUT(double, X5, 0); MACROS_INPUT(double, X6, 0); MACROS_INPUT(double, X7, 0); // FF para el optimizador interno es un ejemplo. double OnTester() { return(MathSin(inInputs.X1) * MathSin(inInputs.X2) * MathSin(inInputs.X3) * MathSin(inInputs.X4) * MathSin(inInputs.X5) * MathSin(inInputs.X6) * MathSin(inInputs.X7)); } #include <fxsaber\Optimization\Optimization_Addon.mqh> // https://www.mql5.com/ru/blogs/post/755815
Entradas.
Optimizador personalizado.
Personalizado.
PSO Finished 15835 of 35000 planned passes: true BestResult = 0.9884554736115849: X1 = 99.0, X2 = 99.0, X3 = 11.0, X4 = 77.0, X5 = 14.0, X6 = 11.0, X7 = 33.0 Check = 0.9884554736115849: X1 = 99.0, X2 = 99.0, X3 = 11.0, X4 = 77.0, X5 = 14.0, X6 = 11.0, X7 = 33.0 01: OPTIMIZATION_METHOD_AO_Micro_AIS OPTIMIZATION_METHOD_AO_Micro_AIS BestResult = 0.6914924547679845: X1 = 17.0, X2 = 89.0, X3 = 61.0, X4 = 33.0, X5 = 71.0, X6 = 64.0, X7 = 8.0 Check = 0.6914924547679845: X1 = 17.0, X2 = 89.0, X3 = 61.0, X4 = 33.0, X5 = 71.0, X6 = 64.0, X7 = 8.0 02: OPTIMIZATION_METHOD_AO_POES OPTIMIZATION_METHOD_AO_POES BestResult = 0.9268682527605293: X1 = 55.0, X2 = 80.0, X3 = 27.0, X4 = 99.0, X5 = 8.0, X6 = 52.0, X7 = 11.0 Check = 0.9268682527605293: X1 = 55.0, X2 = 80.0, X3 = 27.0, X4 = 99.0, X5 = 8.0, X6 = 52.0, X7 = 11.0 03: OPTIMIZATION_METHOD_AO_P_O_ES OPTIMIZATION_METHOD_AO_P_O_ES BestResult = 0.7717845794829589: X1 = 11.0, X2 = 49.0, X3 = 74.0, X4 = 30.0, X5 = 11.0, X6 = 77.0, X7 = 43.0 Check = 0.7717845794829589: X1 = 11.0, X2 = 49.0, X3 = 74.0, X4 = 30.0, X5 = 11.0, X6 = 77.0, X7 = 43.0 04: OPTIMIZATION_METHOD_AO_SC OPTIMIZATION_METHOD_AO_SC BestResult = 0.5703083565001157: X1 = 4.0, X2 = 39.0, X3 = 20.0, X4 = 93.0, X5 = 8.0, X6 = 20.0, X7 = 33.0 Check = 0.5703083565001157: X1 = 4.0, X2 = 39.0, X3 = 20.0, X4 = 93.0, X5 = 8.0, X6 = 20.0, X7 = 33.0 05: OPTIMIZATION_METHOD_AO_SIA OPTIMIZATION_METHOD_AO_SIA BestResult = 0.3770511069126069: X1 = 30.0, X2 = 55.0, X3 = 49.0, X4 = 77.0, X5 = 100.0, X6 = 65.0, X7 = 27.0 Check = 0.3770511069126069: X1 = 30.0, X2 = 55.0, X3 = 49.0, X4 = 77.0, X5 = 100.0, X6 = 65.0, X7 = 27.0 06: OPTIMIZATION_METHOD_AO_SA OPTIMIZATION_METHOD_AO_SA BestResult = 0.4195625904721657: X1 = 58.0, X2 = 77.0, X3 = 27.0, X4 = 40.0, X5 = 70.0, X6 = 14.0, X7 = 70.0 Check = 0.4195625904721657: X1 = 58.0, X2 = 77.0, X3 = 27.0, X4 = 40.0, X5 = 70.0, X6 = 14.0, X7 = 70.0 07: OPTIMIZATION_METHOD_AO_NMm OPTIMIZATION_METHOD_AO_NMm BestResult = 0.8314291991406518: X1 = 30.0, X2 = 46.0, X3 = 99.0, X4 = 11.0, X5 = 96.0, X6 = 39.0, X7 = 74.0 Check = 0.8314291991406518: X1 = 30.0, X2 = 46.0, X3 = 99.0, X4 = 11.0, X5 = 96.0, X6 = 39.0, X7 = 74.0 08: OPTIMIZATION_METHOD_AO_DE OPTIMIZATION_METHOD_AO_DE BestResult = 0.514763435265798: X1 = 33.0, X2 = 39.0, X3 = 49.0, X4 = 20.0, X5 = 73.0, X6 = 20.0, X7 = 58.0 Check = 0.514763435265798: X1 = 33.0, X2 = 39.0, X3 = 49.0, X4 = 20.0, X5 = 73.0, X6 = 20.0, X7 = 58.0 09: OPTIMIZATION_METHOD_AO_SDOm OPTIMIZATION_METHOD_AO_SDOm BestResult = 0.6248310950237546: X1 = 55.0, X2 = 61.0, X3 = 20.0, X4 = 71.0, X5 = 26.0, X6 = 74.0, X7 = 36.0 Check = 0.6248310950237546: X1 = 55.0, X2 = 61.0, X3 = 20.0, X4 = 71.0, X5 = 26.0, X6 = 74.0, X7 = 36.0 10: OPTIMIZATION_METHOD_AO_IWDm OPTIMIZATION_METHOD_AO_IWDm BestResult = 0.6582185170915256: X1 = 33.0, X2 = 24.0, X3 = 61.0, X4 = 55.0, X5 = 46.0, X6 = 36.0, X7 = 1.0 Check = 0.6582185170915256: X1 = 33.0, X2 = 24.0, X3 = 61.0, X4 = 55.0, X5 = 46.0, X6 = 36.0, X7 = 1.0 11: OPTIMIZATION_METHOD_AO_CSS OPTIMIZATION_METHOD_AO_CSS BestResult = 0.17125241139972677: X1 = 11.0, X2 = 5.0, X3 = 11.0, X4 = 37.0, X5 = 56.0, X6 = 65.0, X7 = 37.0 Check = 0.17125241139972677: X1 = 11.0, X2 = 5.0, X3 = 11.0, X4 = 37.0, X5 = 56.0, X6 = 65.0, X7 = 37.0 12: OPTIMIZATION_METHOD_AO_SDS OPTIMIZATION_METHOD_AO_SDS BestResult = 0.7015125972513457: X1 = 17.0, X2 = 46.0, X3 = 27.0, X4 = 39.0, X5 = 77.0, X6 = 71.0, X7 = 86.0 Check = 0.7015125972513457: X1 = 17.0, X2 = 46.0, X3 = 27.0, X4 = 39.0, X5 = 77.0, X6 = 71.0, X7 = 86.0 13: OPTIMIZATION_METHOD_AO_SDSm OPTIMIZATION_METHOD_AO_SDSm BestResult = 0.8318883232825393: X1 = 77.0, X2 = 14.0, X3 = 14.0, X4 = 30.0, X5 = 80.0, X6 = 49.0, X7 = 24.0 Check = 0.8318883232825393: X1 = 77.0, X2 = 14.0, X3 = 14.0, X4 = 30.0, X5 = 80.0, X6 = 49.0, X7 = 24.0 14: OPTIMIZATION_METHOD_AO_MEC OPTIMIZATION_METHOD_AO_MEC BestResult = 0.821421124921697: X1 = 99.0, X2 = 58.0, X3 = 90.0, X4 = 27.0, X5 = 14.0, X6 = 80.0, X7 = 96.0 Check = 0.821421124921697: X1 = 99.0, X2 = 58.0, X3 = 90.0, X4 = 27.0, X5 = 14.0, X6 = 80.0, X7 = 96.0 15: OPTIMIZATION_METHOD_AO_SFL OPTIMIZATION_METHOD_AO_SFL BestResult = 0.7123520662251704: X1 = 49.0, X2 = 52.0, X3 = 80.0, X4 = 93.0, X5 = 52.0, X6 = 87.0, X7 = 14.0 Check = 0.7123520662251704: X1 = 49.0, X2 = 52.0, X3 = 80.0, X4 = 93.0, X5 = 52.0, X6 = 87.0, X7 = 14.0 16: OPTIMIZATION_METHOD_AO_EM OPTIMIZATION_METHOD_AO_EM BestResult = 0.4739892519704631: X1 = 39.0, X2 = 96.0, X3 = 49.0, X4 = 54.0, X5 = 93.0, X6 = 8.0, X7 = 11.0 Check = 0.4739892519704631: X1 = 39.0, X2 = 96.0, X3 = 49.0, X4 = 54.0, X5 = 93.0, X6 = 8.0, X7 = 11.0 17: OPTIMIZATION_METHOD_AO_SSG OPTIMIZATION_METHOD_AO_SSG BestResult = 0.7570642423726676: X1 = 5.0, X2 = 49.0, X3 = 30.0, X4 = 96.0, X5 = 14.0, X6 = 55.0, X7 = 89.0 Check = 0.7570642423726676: X1 = 5.0, X2 = 49.0, X3 = 30.0, X4 = 96.0, X5 = 14.0, X6 = 55.0, X7 = 89.0 18: OPTIMIZATION_METHOD_AO_MA OPTIMIZATION_METHOD_AO_MA BestResult = 0.7831093525101701: X1 = 93.0, X2 = 36.0, X3 = 17.0, X4 = 58.0, X5 = 42.0, X6 = 61.0, X7 = 74.0 Check = 0.7831093525101701: X1 = 93.0, X2 = 36.0, X3 = 17.0, X4 = 58.0, X5 = 42.0, X6 = 61.0, X7 = 74.0 19: OPTIMIZATION_METHOD_AO_HS OPTIMIZATION_METHOD_AO_HS Error optimization! 20: OPTIMIZATION_METHOD_AO_GSA OPTIMIZATION_METHOD_AO_GSA BestResult = 0.020184193323560605: X1 = 9.0, X2 = 27.0, X3 = 54.0, X4 = 6.0, X5 = 77.0, X6 = 75.0, X7 = 23.0 Check = 0.020184193323560605: X1 = 9.0, X2 = 27.0, X3 = 54.0, X4 = 6.0, X5 = 77.0, X6 = 75.0, X7 = 23.0 21: OPTIMIZATION_METHOD_AO_GSA_Stars OPTIMIZATION_METHOD_AO_GSA_Stars Error optimization! 22: OPTIMIZATION_METHOD_AO_BFO OPTIMIZATION_METHOD_AO_BFO BestResult = 0.7322059190279094: X1 = 20.0, X2 = 11.0, X3 = 52.0, X4 = 49.0, X5 = 89.0, X6 = 36.0, X7 = 99.0 Check = 0.7322059190279094: X1 = 20.0, X2 = 11.0, X3 = 52.0, X4 = 49.0, X5 = 89.0, X6 = 36.0, X7 = 99.0 23: OPTIMIZATION_METHOD_AO_IWO OPTIMIZATION_METHOD_AO_IWO BestResult = 0.7392111937754324: X1 = 20.0, X2 = 11.0, X3 = 52.0, X4 = 49.0, X5 = 89.0, X6 = 37.0, X7 = 100.0 Check = 0.24076952243473274: X1 = 20.0, X2 = 11.0, X3 = 52.0, X4 = 49.0, X5 = 89.0, X6 = 37.0, X7 = 100.0 24: OPTIMIZATION_METHOD_AO_BA OPTIMIZATION_METHOD_AO_BA BestResult = 0.35033516894855804: X1 = 98.0, X2 = 49.0, X3 = 92.0, X4 = 77.0, X5 = 96.0, X6 = 99.0, X7 = 21.0 Check = 0.35033516894855804: X1 = 98.0, X2 = 49.0, X3 = 92.0, X4 = 77.0, X5 = 96.0, X6 = 99.0, X7 = 21.0 25: OPTIMIZATION_METHOD_AO_FAm OPTIMIZATION_METHOD_AO_FAm BestResult = 0.8628261244286874: X1 = 61.0, X2 = 33.0, X3 = 93.0, X4 = 55.0, X5 = 30.0, X6 = 49.0, X7 = 55.0 Check = 0.8628261244286874: X1 = 61.0, X2 = 33.0, X3 = 93.0, X4 = 55.0, X5 = 30.0, X6 = 49.0, X7 = 55.0 26: OPTIMIZATION_METHOD_AO_FSS OPTIMIZATION_METHOD_AO_FSS BestResult = 0.6586267117021989: X1 = 90.0, X2 = 17.0, X3 = 30.0, X4 = 11.0, X5 = 11.0, X6 = 89.0, X7 = 46.0 Check = 0.6586267117021989: X1 = 90.0, X2 = 17.0, X3 = 30.0, X4 = 11.0, X5 = 11.0, X6 = 89.0, X7 = 46.0 27: OPTIMIZATION_METHOD_AO_COAm OPTIMIZATION_METHOD_AO_COAm BestResult = 0.751387775021677: X1 = 33.0, X2 = 74.0, X3 = 89.0, X4 = 52.0, X5 = 2.0, X6 = 8.0, X7 = 99.0 Check = 0.751387775021677: X1 = 33.0, X2 = 74.0, X3 = 89.0, X4 = 52.0, X5 = 2.0, X6 = 8.0, X7 = 99.0 28: OPTIMIZATION_METHOD_AO_GWO OPTIMIZATION_METHOD_AO_GWO BestResult = 0.7905125996746682: X1 = 64.0, X2 = 24.0, X3 = 58.0, X4 = 11.0, X5 = 39.0, X6 = 36.0, X7 = 55.0 Check = 0.7905125996746682: X1 = 64.0, X2 = 24.0, X3 = 58.0, X4 = 11.0, X5 = 39.0, X6 = 36.0, X7 = 55.0 29: OPTIMIZATION_METHOD_AO_ABC OPTIMIZATION_METHOD_AO_ABC BestResult = 0.2279828722733523: X1 = 37.0, X2 = 49.0, X3 = 45.0, X4 = 96.0, X5 = 86.0, X6 = 54.0, X7 = 89.0 Check = 0.2279828722733523: X1 = 37.0, X2 = 49.0, X3 = 45.0, X4 = 96.0, X5 = 86.0, X6 = 54.0, X7 = 89.0 30: OPTIMIZATION_METHOD_AO_ACOm OPTIMIZATION_METHOD_AO_ACOm BestResult = 0.7283588705105443: X1 = 58.0, X2 = 36.0, X3 = 46.0, X4 = 58.0, X5 = 77.0, X6 = 42.0, X7 = 46.0 Check = 0.7283588705105443: X1 = 58.0, X2 = 36.0, X3 = 46.0, X4 = 58.0, X5 = 77.0, X6 = 42.0, X7 = 46.0 31: OPTIMIZATION_METHOD_AO_PSO OPTIMIZATION_METHOD_AO_PSO BestResult = 0.5892210470192797: X1 = 52.0, X2 = 52.0, X3 = 68.0, X4 = 62.0, X5 = 86.0, X6 = 77.0, X7 = 30.0 Check = 0.5892210470192797: X1 = 52.0, X2 = 52.0, X3 = 68.0, X4 = 62.0, X5 = 86.0, X6 = 77.0, X7 = 30.0 32: OPTIMIZATION_METHOD_AO_RND OPTIMIZATION_METHOD_AO_RND BestResult = 0.6663782757838177: X1 = 4.896755719304697, X2 = 61.0, X3 = 23.0, X4 = 8.0, X5 = 52.0, X6 = 67.0, X7 = 58.0 Check = 0.6663782757838177: X1 = 4.896755719304697, X2 = 61.0, X3 = 23.0, X4 = 8.0, X5 = 52.0, X6 = 67.0, X7 = 58.0
ZY Algo no funciona correctamente en IWO. Tal vez lo porté torcido.

- Aplicaciones de trading gratuitas
- 8 000+ señales para copiar
- Noticias económicas para analizar los mercados financieros
Usted acepta la política del sitio web y las condiciones de uso
Artículo publicado Algoritmos de optimización de la población: microsistema inmune artificial (Micro Artificial immune system, Micro-AIS):
El artículo habla de un método de optimización basado en los principios del sistema inmune del organismo -Micro Artificial immune system, (Micro-AIS)-, una modificación del AIS. El Micro-AIS usa un modelo más simple del sistema inmunitario y operaciones sencillas de procesamiento de la información inmunitaria. El artículo también analizará las ventajas e inconvenientes del Micro-AIS en comparación con el AIS convencional.
El algoritmo AIS modela estos procesos usando los conceptos de antígenos (entradas), anticuerpos (soluciones) y células asesinas (procesos de optimización) para resolver el problema de forma óptima. Los antígenos representan los datos de entrada que deben optimizarse. Los anticuerpos representan soluciones potenciales al problema. Las células asesinas son procesos de optimización que buscan las mejores soluciones a un problema de optimización.
En los años 90 se propuso un método de optimización conocido como Artificial Immune System (AIS). Las primeras investigaciones sobre este método se iniciaron a mediados de los años ochenta, cuando Farmer, Packard y Perelson (1986) y Bersini y Varela (1990) contribuyeron de forma significativa al desarrollo y la aplicación de los AIS en sus trabajos sobre redes inmunitarias.
Desde entonces, el método AIS ha seguido evolucionando y siendo objeto de investigación permanente en la comunidad científica: se han propuesto numerosas variaciones y modificaciones de este método, así como su aplicación a diversos problemas de optimización y aprendizaje. El sistema inmunitario del organismo también desempeña un papel vital en la protección contra influencias externas, como infecciones y tumores. Tiene capacidad para reconocer y detectar anomalías y atacar a agentes hostiles, al tiempo que conserva la capacidad de distinguirlos y guardar información sobre ellos para su uso futuro.
El Micro-AIS (Micro-Immune Algorithm) es una modificación del algoritmo del sistema inmune (AIS) que se ha desarrollado para resolver problemas de optimización. Se diferencia del AIS convencional en que usa un modelo más simple del sistema inmunitario y operaciones de procesamiento de la información inmunitaria más sencillas.
Autor: Andrey Dik