Hlomohang John Borotho / Профиль
- Информация
|
1 год
опыт работы
|
1
продуктов
|
4
демо-версий
|
|
0
работ
|
0
сигналов
|
0
подписчиков
|
From me to you will be GOLD(XAUUSD) market analysis
EA's that will only be on GOLD markets
Улучшите свой код MQL5, оптимизировав логику, улучшив вычисления и сократив время выполнения, чтобы повысить точность тестирования на истории. Проведите тонкую настройку параметров, оптимизацию циклов и устранение неэффективности для улучшения результата.
This topic focuses on incorporating a trained AI model (such as a reinforcement learning model like LSTM or a machine learning-based predictive model) into an existing MQL5 trading strategy.
Диверсификация и оптимизация портфеля позволяют стратегически распределять инвестиции по нескольким активам, чтобы минимизировать риски, и при этом выбирать идеальную комбинацию активов для максимизации доходности на основе показателей эффективности с учетом риска.
В статье рассматриваются передовые методы интеграции MQL5 с мощными инструментами обработки данных, а также уделяется внимание эффективной обработке больших данных для улучшения торгового анализа и принятия решений.
SMC (Order Block) — это ключевые области, где институциональные трейдеры совершают значительные покупки или продажи. После значительного движения цены уровни Фибоначчи помогают определить потенциальный откат от недавнего максимума колебания (swing high) к минимуму колебания (swing low) для определения оптимальной точки входа в сделку.
В этой статье мы рассмотрим расширенную визуализацию данных, включая такие функции, как интерактивность, многослойные данные и динамические элементы, позволяющие трейдерам более эффективно изучать тренды, закономерности и корреляции.
Динамический советник на нескольких парах использует как корреляционные, так и обратные корреляционные стратегии для оптимизации эффективности торговли. Анализируя рыночные данные в режиме реального времени, он определяет и использует взаимосвязь между валютными парами.
В нашей серии статей об интеграции MQL5 с пакетами обработки данных мы подробно рассматриваем мощное сочетание машинного обучения и предиктивного анализа. Мы изучим, как беспрепятственно объединить MQL5 с популярными библиотеками машинного обучения, чтобы создавать сложные прогностические модели финансовых рынков.
Интеграция обеспечивает бесперебойный рабочий процесс, при котором необработанные финансовые данные из MQL5 можно импортировать в пакеты обработки данных, такие как Jupyter Lab, для расширенного анализа, включая статистическое тестирование.
Концепция Smart Money (Break of Structure) в сочетании с индикатором RSI для принятия обоснованных решений в автоматической торговле на основе структуры рынка.