Kun Li
Kun Li
поделился кодом автора Boris Odintsov
 Библиотека для проведения операций с матрицами
Библиотека для работы с матрицами: создание матриц и основные операции с ними: cложение, вычитание, умножение, инвертирование.
поделился кодом автора Dmitry Fedoseev
 IncMatrix
Класс для работы с матрицами.
поделился кодом автора Scriptor
 Kicking Pattern
Индикатор ищет на графике последовательность свечей, отображает бычью и медвежью последовательность сигнальными метками.
поделился статьей автора Omega J Msigwa
Машинное обучение и Data Science (Часть 07): Полиномиальная регрессия
Машинное обучение и Data Science (Часть 07): Полиномиальная регрессия

Полиномиальная регрессия — это гибкая модель, предназначенная для эффективного решения задач, с которыми не справляется модель линейной регрессии. В этой статье узнаем, как создавать полиномиальные модели на MQL5 и извлекать из них выгоду.

поделился статьей автора dmitrievsky
Грокаем "память" рынка через дифференцирование и энтропийный анализ
Грокаем "память" рынка через дифференцирование и энтропийный анализ

Область применения дробного дифференцирования достаточно широка. Например, алгоритмы машинного обучения, обычно, принимают дифференцированный ряд на вход. Проблема в том, что необходимо вывести новые данные в соответствии с имеющейся историей, чтобы модель машинного обучения смогла распознать их. В данной статье рассматривается оригинальный подход к дифференцированию временного ряда, в дополнении к этому приводится пример самооптимизирующейся ТС на основе полученного дифференцированного ряда.

поделился статьей автора Omega J Msigwa
Машинное обучение и Data Science (Часть 02): Логистическая регрессия
Машинное обучение и Data Science (Часть 02): Логистическая регрессия

Классификация данных — важнейшая вещь для алготрейдера и программиста. В этой статье мы рассмотрим в подробностях один из классификационных логистических алгоритмов, который может помочь нам определить «да» или «нет», рост или падение, покупки или продажи.

поделился статьей автора Andrey Dik
Популяционные алгоритмы оптимизации: Алгоритм оптимизации с кукушкой (Cuckoo Optimization Algorithm — COA)
Популяционные алгоритмы оптимизации: Алгоритм оптимизации с кукушкой (Cuckoo Optimization Algorithm — COA)

Следующий алгоритм, который рассмотрим — оптимизация поиском кукушки с использованием полётов Леви. Это один из новейших алгоритмов оптимизации и новый лидер в рейтинговой таблице.

поделился статьей автора Andrey Dik
Популяционные алгоритмы оптимизации: Оптимизация Стаей Серых Волков (Grey Wolf Optimizer - GWO)
Популяционные алгоритмы оптимизации: Оптимизация Стаей Серых Волков (Grey Wolf Optimizer - GWO)

Рассмотрим один из новейших современных алгоритмов оптимизации "Стаи серых волков". Оригинальное поведение на тестовых функциях делает этот алгоритм одним из самых интересных среди рассмотренных ранее. Один из лидеров для применения в обучении нейронных сетей, гладких функций с многими переменными.

MetaQuotes
MetaQuotes
Learning ONNX for trading
We have added support for ONNX models in MQL5 since we believe this is the future. We have created this topic to discuss and study this promising field which can assist in raising the use of machine learning to a new level. By using the new
Boris
Boris
Комментарий к теме Advanced Cycle Analysis
EMD Huang indicator Hi all, I made a break in further optimizing the Goertzel Browser. I focussed more on Empirical Mode Decomposition which I consider as very important for preprocessing data for
поделился статьей автора Andrey Dik
Популяционные алгоритмы оптимизации: Искуственная Пчелиная Колония (Artificial Bee Colony - ABC)
Популяционные алгоритмы оптимизации: Искуственная Пчелиная Колония (Artificial Bee Colony - ABC)

Сегодня изучим алгоритм искусственной пчелиной колонии. Дополним наши знания новыми принципами исследования функциональных пространств. В данной статье я расскажу о моей интерпретации классического варианта алгоритма.

поделился статьей автора Aleksej Poljakov
Адаптивные индикаторы
Адаптивные индикаторы

В этой статье мы рассмотрим несколько возможных подходов к созданию адаптивных индикаторов. Адаптивные индикаторы отличаются наличием обратной связи между значениями входных и выходного сигналов. Эта связь позволяет индикатору самостоятельно подстраиваться на оптимальную обработку значений финансового временного ряда.

поделился статьей автора Aleksej Poljakov
Нелинейные индикаторы
Нелинейные индикаторы

В этой статье мы сделаем попытку рассмотреть некоторые способы построения нелинейных индикаторов и их использование в трейдинге. В торговой платформе MetaTrader довольно много индикаторов, которые используют нелинейные подходы.

поделился статьей автора Stanislav Korotky
Наивный байесовский классификатор для сигналов набора индикаторов
Наивный байесовский классификатор для сигналов набора индикаторов

В статье анализируется применение формулы Байеса для повышения надежности торговых систем за счет использования сигналов нескольких независимых индикаторов. Теоретические расчеты проверяются с помощью простого универсального эксперта, настраиваемого для работы с произвольными индикаторами.

поделился статьей автора Andriy Voitenko
Создание бота для Telegram на языке MQL5
Создание бота для Telegram на языке MQL5

Эта статья — пошаговое руководство по созданию бота для Telegram на языке MQL5. Данный материал будет интересен тем, кто хочет связать торгового робота со своим мобильным устройством. В статье приведены примеры ботов, выполняющие рассылку торговых сигналов, поиск информации на сайте, присылающие информацию о состоянии торгового счета, котировки и скриншоты графиков на ваш смартфон.

поделился статьей автора Dmitriy Gizlyk
Нейросети — это просто (Часть 28): Policy gradient алгоритм
Нейросети — это просто (Часть 28): Policy gradient алгоритм

Продолжаем изучение методов обучение с подкреплением. В предыдущей статье мы познакомились с методом глубокого Q-обучения. В котором мы обучаем модель прогнозирования предстоящей награды в зависимости от совершаемого действия в конкретной ситуации. И далее совершаем действие в соответствии с нашей политикой и ожидаемой наградой. Но не всегда возможно аппроксимировать Q-функцию. Или её аппроксимация не даёт желаемого результата. В таких случаях используют методы аппроксимации не функции полезности, а на прямую политику (стратегию) действий. Именно к таким методам относится policy gradient.

поделился статьей автора Dmitriy Gizlyk
Нейросети — это просто (Часть 16): Практическое использование кластеризации
Нейросети — это просто (Часть 16): Практическое использование кластеризации

В предыдущей статье мы построили класс для кластеризации данных. В этой статье я хочу с вами поделиться вариантами возможного использования полученных результатов для решения практических задач трейдинга.

поделился статьей автора Dmitriy Gizlyk
Нейросети — это просто (Часть 26): Обучение с подкреплением
Нейросети — это просто (Часть 26): Обучение с подкреплением

Продолжаем изучение методов машинного обучения. Данной статьей мы начинаем еще одну большую тему "Обучение с подкреплением". Данный подход позволяет моделям выстаивать определенные стратегии для решения поставленных задач. И мы рассчитываем, что это свойство обучения с подкреплением откроет перед нами новые горизонты построения торговых стратегий.

поделился статьей автора Victor
Анализ основных характеристик временных рядов
Анализ основных характеристик временных рядов

В статье представлен класс, предназначенный для осуществления быстрой предварительной оценки характеристик различных временных рядов. При этом производится оценка статистических параметров, автокорреляционной функции, строится гистограмма и производится спектральная оценка временного ряда.