Ti stai perdendo delle opportunità di trading:
- App di trading gratuite
- Oltre 8.000 segnali per il copy trading
- Notizie economiche per esplorare i mercati finanziari
Registrazione
Accedi
Accetti la politica del sito e le condizioni d’uso
Se non hai un account, registrati
Predicting the direction and movement of stock index prices is difficult, often leading to excessive trading, transaction costs, and missed opportunities. Often traders need a systematic method to not only spot trading opportunities, but to also provide a consistent approach, thereby minimizing trading errors and costs. While mechanical trading systems exist, they are usually designed for a specific stock, stock index, or other financial asset, and are often highly dependent on preselected inputs and model parameters that are expected to continue providing trading information well after the initial training or back-tested model development period. The following research leads to a detailed trading model that provides a more effective and intelligent way for recognizing trading signals and assisting investors with trading decisions by utilizing a system that adapts both the inputs and the prediction model based on the desired output. To illustrate the adaptive approach, multiple inputs and modeling techniques are utilized, including neural networks, particle swarm optimization, and denoising. Simulations with stock indexes illustrate how traders can generate higher returns using the developed adaptive decision support system model. The benefits of adding adaptive and intelligent decision making to forecasts are also discussed.
The Foreign Exchange Market is the biggest and one of the most liquid markets in the world. This market has always been one of the most challenging markets as far as short term prediction is concerned. Due to the chaotic, noisy, and non-stationary nature of the data, the majority of the research has been focused on daily, weekly, or even monthly prediction. The literature review revealed that there is a gap for intra-day market prediction. Identifying this gap, this paper introduces a prediction and decision making model based on Artificial Neural Networks (ANN) and Genetic Algorithms. The dataset utilized for this research comprises of 70 weeks of past currency rates of the 3 most traded currency pairs: GBP\USD, EUR\GBP, and EUR\USD. The initial statistical tests confirmed with a significance of more than 95% that the daily FOREX currency rates time series are not randomly distributed. Another important result is that the proposed model achieved 72.5% prediction accuracy. Furthermore, implementing the optimal trading strategy, this model produced 23.3% Annualized Net Return. (c) 2013 Elsevier Ltd. All rights reserved.
Sviluppo di indicatori di rete neurale
Ciao!
Sto cercando di fare alcuni indicatori di rete neurale per Metatrader4, e vorrei alcuni suggerimenti, soprattutto per quanto riguarda gli ingressi e le uscite della rete, e forse la struttura o il tipo di rete che si considera il migliore per questa applicazione.
Per quanto ne so, i migliori output per la previsione di serie finanziarie sono le previsioni di range di prezzo, la previsione di top o bottom, e questo tipo di cose. Prevedere direttamente il prezzo (apertura, chiusura) non ottiene buoni risultati per numerose ragioni, per esempio un piccolo spostamento nel tempo tra l'ora di apertura e quella di chiusura potrebbe cambiare i loro valori in modo considerevole.
Se qualcuno ha un suggerimento, sarò felice di ascoltarlo e provarlo.
A proposito, non sono un esperto programmatore di reti neurali, ho solo una buona idea generale sull'argomento =P.
Grazie in anticipo,
JCC
The Foreign Exchange Market is the biggest and one of the most liquid markets in the world. This market has always been one of the most challenging markets as far as short term prediction is concerned. Due to the chaotic, noisy, and non-stationary nature of the data, the majority of the research has been focused on daily, weekly, or even monthly prediction. The literature review revealed that there is a gap for intra-day market prediction. Identifying this gap, this paper introduces a prediction and decision making model based on Artificial Neural Networks (ANN) and Genetic Algorithms. The dataset utilized for this research comprises of 70 weeks of past currency rates of the 3 most traded currency pairs: GBP\USD, EUR\GBP, and EUR\USD. The initial statistical tests confirmed with a significance of more than 95% that the daily FOREX currency rates time series are not randomly distributed. Another important result is that the proposed model achieved 72.5% prediction accuracy. Furthermore, implementing the optimal trading strategy, this model produced 23.3% Annualized Net Return.
OpenNN (Open Neural Networks Library) is a software library written in the C++ programming language which implements neural networks, a main area of deep learning research..
OpenNN implementa metodi di data mining come un pacchetto di funzioni. Queste possono essere incorporate in altri strumenti software utilizzando un'interfaccia di programmazione delle applicazioni (API) per l'interazione tra lo strumento software e i compiti di analisi predittiva. A questo proposito, manca un'interfaccia utente grafica, ma alcune funzioni possono supportare l'integrazione di specifici strumenti di visualizzazione.
Il vantaggio principale di OpenNN è la sua alta performance. Questa libreria si distingue in termini di velocità di esecuzione e di allocazione della memoria. È costantemente ottimizzata e parallelizzata al fine di massimizzare la sua efficienza.
Rete neurale
Rete Neurale: thread di discussione/sviluppo
Rete neurale: Indicatori e sviluppo di sistemi
Rete Neurale: EAs
Rete Neurale: I Libri